
Breaking the Top-𝐾 Barrier: Advancing Top-𝐾 Ranking Metrics
Optimization in Recommender Systems

Weiqin Yang
†‡

Zhejiang University

Hangzhou, China

tinysnow@zju.edu.cn

Jiawei Chen
∗†‡§

Zhejiang University

Hangzhou, China

sleepyhunt@zju.edu.cn

Shengjia Zhang
†‡

Zhejiang University

Hangzhou, China

shengjia.zhang@zju.edu.cn

Peng Wu
¶

Beijing Technology and Business

University

Beijing, China

pengwu@btbu.edu.cn

Yuegang Sun

Intelligence Indeed

Hangzhou, China

bulutuo@i-i.ai

Yan Feng
†‡

Zhejiang University

Hangzhou, China

fengyan@zju.edu.cn

Chun Chen
†‡

Zhejiang University

Hangzhou, China

chenc@zju.edu.cn

Can Wang
†§

Zhejiang University

Hangzhou, China

wcan@zju.edu.cn

Abstract
In the realm of recommender systems (RS), Top-𝐾 ranking metrics

such as NDCG@𝐾 are the gold standard for evaluating recommen-

dation performance. However, during the training of recommen-

dation models, optimizing NDCG@𝐾 poses significant challenges

due to its inherent discontinuous nature and the intricate Top-𝐾

truncation. Recent efforts to optimize NDCG@𝐾 have either over-

looked the Top-𝐾 truncation or suffered from high computational

costs and training instability. To overcome these limitations, we

propose SoftmaxLoss@𝐾 (SL@𝐾), a novel recommendation loss

tailored for NDCG@𝐾 optimization. Specifically, we integrate the

quantile technique to handle Top-𝐾 truncation and derive a smooth

upper bound for optimizing NDCG@𝐾 to address discontinuity.

The resulting SL@𝐾 loss has several desirable properties, includ-

ing theoretical guarantees, ease of implementation, computational

efficiency, gradient stability, and noise robustness. Extensive ex-

periments on four real-world datasets and three recommendation

backbones demonstrate that SL@𝐾 outperforms existing losses

with a notable average improvement of 6.03%. The code is avail-
able at https://github.com/Tiny-Snow/IR-Benchmark.

∗
Corresponding author.

†
State Key Laboratory of Blockchain and Data Security, Zhejiang University.

‡
College of Computer Science and Technology, Zhejiang University.

§
Hangzhou High-Tech Zone (Binjiang) Institute of Blockchain and Data Security.

¶
School of Mathematics and Statistics, Beijing Technology and Business University.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than the

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific permission

and/or a fee. Request permissions from permissions@acm.org.

KDD ’25, Toronto, ON, Canada.
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM ISBN 979-8-4007-1454-2/25/08

https://doi.org/10.1145/3711896.3736866

CCS Concepts
• Information systems→ Recommender systems.

Keywords
Recommender systems; Surrogate loss; NDCG@𝐾 optimization

ACM Reference Format:
Weiqin Yang, Jiawei Chen, Shengjia Zhang, Peng Wu, Yuegang Sun, Yan

Feng, Chun Chen, and Can Wang. 2025. Breaking the Top-𝐾 Barrier: Ad-

vancing Top-𝐾 Ranking Metrics Optimization in Recommender Systems .

In Proceedings of the 31st ACM SIGKDD Conference on Knowledge Discovery
and Data Mining V.2 (KDD ’25), August 3–7, 2025, Toronto, ON, Canada. ACM,

New York, NY, USA, 22 pages. https://doi.org/10.1145/3711896.3736866

KDD Availability Link:
The source code of this paper has been made publicly available at https:

//doi.org/10.5281/zenodo.15535932.

1 Introduction
Recommender systems (RS) [11, 17, 18, 39, 71, 73] have been widely

applied in various personalized services [52, 61]. The primary goal

of RS is to model users’ preferences on items and subsequently

retrieve a select number of items that users are most likely to

interact with [30, 42, 45]. In practice, RS typically display only𝐾 top-

ranked items to users based on their preference scores. Therefore,

Top-𝐾 ranking metrics, e.g., NDCG@𝐾 [27], are commonly used to

evaluate recommendation performance. Unlike full-ranking metrics,
e.g., NDCG [33], which assess the entire ranking list, Top-𝐾 ranking

metrics focus on the quality of the items ranked within the Top-𝐾

positions, making them more aligned with practical requirements.

Challenges. Despite the widespread adoption of the NDCG@𝐾

metric, its optimization presents two fundamental challenges:

• Top-𝐾 truncation: NDCG@𝐾 involves truncating the ranking list,

requiring the identification of which items occupy the Top-𝐾

https://orcid.org/0000-0002-5750-5515
https://orcid.org/0000-0002-4752-2629
https://orcid.org/0009-0004-0209-2276
https://orcid.org/0000-0001-7154-8880
https://orcid.org/0009-0009-2701-4641
https://orcid.org/0000-0002-3605-5404
https://orcid.org/0000-0002-6198-7481
https://orcid.org/0000-0002-5890-4307
https://github.com/Tiny-Snow/IR-Benchmark
https://doi.org/10.1145/3711896.3736866
https://doi.org/10.1145/3711896.3736866
https://doi.org/10.5281/zenodo.15535932
https://doi.org/10.5281/zenodo.15535932

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Weiqin Yang et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

NDCG@5 = 0.485 NDCG = 0.832

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

NDCG@5 = 0.553 NDCG = 0.785

Ranking 1

Ranking 2

Positive Item Negative Item

(a) Inconsistency between NDCG and NDCG@𝐾 .

60.4x

(b) Execution time. (c) Gradient distribution.

Figure 1: (a) Inconsistency between NDCG and NDCG@𝐾 . Ranking 1 and Ranking 2 represent two different ranking lists of the
same set of items, where red/white circles denote positive/negative items, respectively. While Ranking 1 has a better NDCG
than Ranking 2, it has worse NDCG@5. (b) Execution time comparison. LambdaLoss@𝐾 incurs a significantly higher (60 times)
computational overhead compared to SL and SL@𝐾 on the Electronic dataset (8K items). (c) Gradient distribution comparison.
LambdaLoss@𝐾 and SONG@𝐾 exhibit skewed long-tailed gradient distributions, where top-5% samples contribute over 90% of
the overall gradients. In contrast, SL@𝐾 achieves a more moderate gradient distribution, where top-5% samples contribute less
than 15% of the overall gradients. This leads to better data utilization and training stability.

positions. This necessitates sorting the entire item list, imposing

significant computational costs and optimization complexities.

• Discontinuity: NDCG@𝐾 is inherently discontinuous or flat ev-

erywhere in the space of model parameters, which severely im-

pedes the effectiveness of gradient-based optimization methods.

Existing works. Recent studies have introduced two types of

NDCG@𝐾 surrogate losses to tackle these challenges. However,

these approaches still exhibit significant limitations:

• A prominent line of work focuses on optimizing full-ranking
metrics like NDCG, without accounting for the complex Top-𝐾

truncation. Notable among these is Softmax Loss (SL) [82], which

serves as an upper bound for optimizing NDCG and demon-

strates state-of-the-art performance [4, 72, 81, 84]. Moreover, SL

enjoys practical advantages in terms of formulation simplicity

and computational efficiency. However, we argue that NDCG is

inconsistent with NDCG@𝐾 — NDCG@𝐾 focuses exclusively on

a few top-ranked items, while NDCG evaluates the entire rank-

ing list. This discrepancy means that optimizing NDCG does not

always yield improvements in NDCG@𝐾 and may even lead to

performance degradation, as illustrated in Figure 1a. Therefore,

without incorporating Top-𝐾 truncation, these NDCG surrogate

losses could inherently encounter performance bottlenecks.

• Few studies have explored incorporating Top-𝐾 truncation into

NDCG@𝐾 optimization. For example, LambdaLoss@𝐾 [31] in-

corporates truncation-aware lambda weights [5, 77] based on

ranking positions to optimize NDCG@𝐾 , exhibiting superior

performance compared to full-ranking surrogate losses like SL

[82] and LambdaLoss [77] in learning to rank tasks [45]. An-

other notable work is SONG@𝐾 [59], which employs a inge-

nious bilevel compositional optimization strategy [74] to opti-

mize NDCG@𝐾 with provable guarantees. While these methods

have proven effective in other tasks, we find them ineffective
for recommendation due to the large-scale and sparse nature

of RS data. Specifically, LambdaLoss@𝐾 requires sorting the

entire item list to calculate lambda weights, which is computa-

tionally impractical in real-world RS (cf. Figure 1b). Additionally,

both LambdaLoss@𝐾 and SONG@𝐾 exhibit a highly skewed

gradient distribution in RS — a few instances dominate the gradi-

ents, while the majority contribute negligibly (cf. Figure 1c). This

severely hinders effective data utilization and model training.

Ourmethod. Given the critical importance of optimizingNDCG@𝐾

and the inherent limitations of existing losses in RS, it is essential to

devise a more effective NDCG@𝐾 surrogate loss. In this paper, we

propose SoftmaxLoss@𝐾 (SL@𝐾), incorporating the following
two key strategies to address the aforementioned challenges:

• To address the Top-𝐾 truncation challenge, we employ the quan-
tile technique [3, 40]. Specifically, we introduce a Top-𝐾 quantile

for each user as a threshold score that separates the Top-𝐾 items

from the remainder. This technique transforms the complex Top-

𝐾 truncation into a simpler comparison between item scores and

quantiles, which circumvents the need for explicit calculations

of ranking positions. We further develop a Monte Carlo-based

quantile estimation strategy that achieves both computational

efficiency and theoretical precision guarantees.

• To overcome the discontinuity challenge, we derive an upper

bound for optimizing NDCG@𝐾 and relax it into a smooth sur-

rogate loss — SL@𝐾 . Our analysis proves that SL@𝐾 serves as a

tight upper bound for − log NDCG@𝐾 , ensuring its theoretical

effectiveness in Top-𝐾 recommendation.

Beyond its theoretical foundations, SL@𝐾 offers several practical

advantages: (i) Ease of implementation: Compared to SL, SL@𝐾 only

adds a quantile-based weight for each positive instance, making it

easy to implement and integrate into existing RS. (ii) Computational
efficiency: The adoption of quantile estimation and relaxation tech-

niques incurs minimal additional computational overhead over SL

(cf. Figure 1b). (iii)Gradient stability: SL@𝐾 exhibits more moderate

gradient distribution characteristics during training (cf. Figure 1c),

promoting effective data utilization and improving model train-

ing stability. (iv) Noise robustness: SL@𝐾 demonstrates enhanced

robustness against false positive noise [12, 79], i.e., interactions

arising from extraneous factors rather than user preferences.

Finally, to empirically validate the effectiveness of SL@𝐾 , we

conduct extensive experiments on four real-world recommenda-

tion datasets and three typical recommendation backbones. Ex-

perimental results demonstrate that SL@𝐾 achieves impressive

Breaking the Top-𝐾 Barrier: Advancing Top-𝐾 Ranking Metrics Optimization in Recommender Systems KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

performance improvements of 6.03% on average. Additional ex-

periments, including an exploration of varying hyperparameter 𝐾

and robustness evaluations, confirm that SL@𝐾 is not only well-

aligned with NDCG@𝐾 , but also exhibits superior resistance to

noise. Moreover, since SL@𝐾 is essentially a general ranking loss, it

can be seamlessly applied to other information retrieval (IR) tasks.

We extend our work to three different IR tasks, including learning

to rank (LTR) [57], sequential recommendation (SeqRec) [36], and

link prediction (LP) [43]. Empirical results validate the versatility

and effectiveness of SL@𝐾 across diverse IR tasks.

Contributions. In summary, our contributions are as follows:

• We highlight the significance of optimizing the Top-𝐾 ranking

metric NDCG@𝐾 in recommendation and reveal the limitations

of existing losses.

• We propose a novel loss function, SL@𝐾 , tailored for Top-𝐾

recommendation by integrating the quantile technique and ana-

lyzing the upper bound of NDCG@𝐾 .

• We conduct extensive experiments on various real-world datasets

and backbones, demonstrating the superiority of SL@𝐾 over

existing losses, achieving an average improvement of 6.03%.

• We extend SL@𝐾 to three different IR tasks, validating its versa-

tility and effectiveness beyond conventional recommendation.

2 Preliminaries
In this section, we first present the task formulation (Section 2.1),

then highlight the challenges in optimizing NDCG@𝐾 (Section 2.2),

and finally introduce Softmax Loss (SL) [82] while discussing its

limitations in optimizing NDCG@𝐾 (Section 2.3).

2.1 Top-𝐾 Recommendation
In this work, we focus on the Top-𝐾 recommendation from implicit

feedback, a widely-used scenario in recommender systems (RS)

[69, 88]. Specifically, given an RS with a user setU and an item set

I, let D = {𝑦𝑢𝑖 : 𝑢 ∈ U, 𝑖 ∈ I} denote the historical interactions
between users and items, where 𝑦𝑢𝑖 = 1 indicates that user 𝑢 has

interacted with item 𝑖 , and𝑦𝑢𝑖 = 0 indicates no interaction. For each

user𝑢, we denote P𝑢 = {𝑖 ∈ I : 𝑦𝑢𝑖 = 1} as the set of positive items,

andN𝑢 = I \P𝑢 as the set of negative items. The recommendation

task can be formulated as follows: learning user preferences from

dataset D and recommending the Top-𝐾 items that users are most

likely to interact with.

Formally, modern RS typically infer user preferences for items

with a learnable model 𝑠𝑢𝑖 = 𝑓Θ (𝑢, 𝑖), where 𝑓Θ (𝑢, 𝑖) : U × I → R
can be any flexible recommendation backbone with parameters Θ,
mapping user/item features (e.g., IDs) into their preference scores

𝑠𝑢𝑖 . Subsequently, the Top-𝐾 items with the highest scores 𝑠𝑢𝑖 are

retrieved as recommendations. In this work, we focus not on model

architecture design but instead on exploring the recommendation

loss. Given that the loss function guides the optimization direction

of models, its importance cannot be overemphasized [62].

2.2 NDCG@𝐾 Metric
Formulation of NDCG@𝐾 . Given the Top-𝐾 nature of RS, Top-𝐾

ranking metrics have been widely used to evaluate the recommen-

dation performance. This work focuses on the most representative

Top-𝐾 ranking metric, i.e., NDCG@𝐾 (Normalized Discounted Cu-

mulative Gain with Top-𝐾 truncation) [27, 33]. Formally, for each

user 𝑢, NDCG@𝐾 can be formulated as follows:

NDCG@𝐾 (𝑢) = DCG@𝐾 (𝑢)
IDCG@𝐾 (𝑢) , DCG@𝐾 (𝑢) =

∑︁
𝑖∈P𝑢

I(𝜋𝑢𝑖 ≤ 𝐾)
log

2
(𝜋𝑢𝑖 + 1) ,

(2.1)

where I(·) is the indicator function, 𝜋𝑢𝑖 =
∑
𝑗∈I I(𝑠𝑢 𝑗 ≥ 𝑠𝑢𝑖) is the

ranking position of item 𝑖 for user 𝑢, and IDCG@𝐾 is a normalizing

constant representing the optimal DCG@𝐾 with an ideal ranking.

As observed, NDCG@𝐾 not only evaluates the number of posi-

tive items within the Top-𝐾 recommendations (similar to other Top-

𝐾 metrics, e.g., Recall@𝐾 and Precision@𝐾), but also accounts for

their ranking positions, i.e., higher-ranked items contribute more

to NDCG@𝐾 . This makes NDCG@𝐾 a more practical metric for

recommendation. Therefore, this work focuses on NDCG@K, while

we also observe that effectively optimizing NDCG@𝐾 can bring

improvements on other Top-𝐾 metrics like Recall@K (cf. Table 2).

Challenges in optimizingNDCG@𝐾 . While NDCG@𝐾 is widely

applied, directly optimizing it presents significant challenges:

• Challenge 1: Top-𝐾 truncation. NDCG@𝐾 involves truncating

the ranking list, as indicated by the term I(𝜋𝑢𝑖 ≤ 𝐾) in Equa-

tion (2.1). This implies the need to determine whether an item

is situated within the Top-𝐾 positions. Directly computing this

involves sorting all items for each user, which is computationally

impractical for RS. Moreover, this truncation introduces highly

complex gradient signals, complicating the optimization process.

• Challenge 2: Discontinuity. NDCG@𝐾 is a discontinuous metric

as it incorporates the indicator function and the ranking posi-

tions. Furthermore, this metric exhibits flat characteristics across

most regions of the parameter space, i.e., the metric remains

unchanged with minor perturbations of 𝑠𝑢𝑖 almost everywhere.

This results in the gradient being undefined or vanishing, posing

substantial challenges to the effectiveness of existing gradient-

based optimization methods [63]. Consequently, a smooth surro-

gate for NDCG@K is required to facilitate optimization.

2.3 Softmax Loss
Softmax Loss (SL) [82] has achieved remarkable success in RS.

Specifically, SL integrates a contrastive learning paradigm [46]. It

normalizes the preference scores to a multinomial distribution [9]

by Softmax operator, augmenting the scores of positive items as

compared to the negative ones [7]. Formally, SL is defined as:

LSL (𝑢) = −
∑︁
𝑖∈P𝑢

log

exp(𝑠𝑢𝑖/𝜏)∑︁
𝑗∈I

exp(𝑠𝑢 𝑗/𝜏)
=

∑︁
𝑖∈P𝑢

log
©­«
∑︁
𝑗∈I

exp(𝑑𝑢𝑖 𝑗/𝜏)ª®¬ ,
(2.2)

where 𝑑𝑢𝑖 𝑗 = 𝑠𝑢 𝑗 − 𝑠𝑢𝑖 is the negative-positive score difference,

and 𝜏 is a temperature coefficient controlling the sharpness of the

Softmax distribution.

Underlying rationale of SL. The success of SL can be attributed

to two main aspects: (i) Theoretical guarantees: SL has been proven

to serve as an upper bound of − log NDCG [4, 84], ensuring that

optimizing SL is consistent with optimizing NDCG, leading to state-

of-the-art (SOTA) performance [81]. (ii) Computational efficiency:
SL does not require accurately calculating the ranking positions,

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Weiqin Yang et al.

which is time-consuming. In fact, SL can be efficiently estimated

through negative sampling [81]. That is, the sum of item 𝑗 over the

entire item set I in Equation (2.2) can be approximated by sampling

a few negative items through uniform [20, 84] or in-batch [35, 82]

sampling. These advantages make SL a practical and effective choice

for NDCG optimization, demonstrating superior performance and

efficiency over other NDCG surrogate methods, including ranking-

based (e.g., Smooth-NDCG [10]), Gumbel-based (e.g., NeuralSort

[19]), and neural-based (e.g., GuidedRec [60]) methods. Nowadays,

SL has been extensively applied in practice, attracting considerable

research exploration with a substantial amount of follow-up work.

Limitations of SL. While SL serves as an effective surrogate loss

for NDCG, a significant gap remains betweenNDCG andNDCG@𝐾 ,

which limits its performance. As Figure 1a shows, optimizing NDCG

does not consistently improve NDCG@𝐾 and sometimes even leads

to performance drops. This limitation still exists in more advanced

SL-based losses, e.g., AdvInfoNCE [87], BSL [81], and PSL [84].

Therefore, how to bridge this gap and effectively model the Top-𝐾

truncation in recommendation loss remains an open challenge.

3 Methodology
To bridge the gap towards NDCG@𝐾 optimization, we propose

SoftmaxLoss@𝐾 (SL@𝐾), a novel NDCG@𝐾 surrogate loss. In

this section, we first present the derivations and implementation

details of SL@𝐾 (Section 3.1). Then, we analyze its properties and

discuss its advantages over existing losses (Section 3.2).

3.1 Proposed Loss: SoftmaxLoss@𝐾

The primary challenges in optimizing NDCG@𝐾 , as discussed in

Section 2.2, are the Top-𝐾 truncation and the discontinuity. To tackle
these challenges, we introduce the following two techniques.

3.1.1 Quantile-based Top-𝐾 Truncation. To address the Top-𝐾 trun-
cation challenge, we need to estimate the Top-𝐾 truncation term

I(𝜋𝑢𝑖 ≤ 𝐾), which involves estimating the ranking position 𝜋𝑢𝑖
for each interaction (𝑢, 𝑖). However, directly estimating 𝜋𝑢𝑖 is par-

ticularly challenging. Sorting all items for each user to calculate

𝜋𝑢𝑖 will incur a computational cost of 𝑂 (|U||I| log |I |), which is

impractical for real-world RS with immense user and item scales.

To overcome this, we borrow the quantile technique [21, 40].
Specifically, we introduce a Top-𝐾 quantile 𝛽𝐾𝑢 for each user 𝑢, i.e.,

𝛽𝐾𝑢 := inf{𝑠𝑢𝑖 : 𝜋𝑢𝑖 ≤ 𝐾}. (3.1)

This quantile acts as a threshold score that separates the Top-𝐾

items from the rest. Specifically, if an item’s score is larger than

the quantile, i.e., 𝑠𝑢𝑖 ≥ 𝛽𝐾𝑢 , then item 𝑖 is Top-𝐾 ranked; conversely,

𝑠𝑢𝑖 < 𝛽𝐾𝑢 implies that item 𝑖 is outside the Top-𝐾 positions. There-

fore, the Top-𝐾 truncation term can be rewritten as:

I(𝜋𝑢𝑖 ≤ 𝐾) = I(𝑠𝑢𝑖 ≥ 𝛽𝐾𝑢) . (3.2)

This transformation reduces the complex truncation to a simple

comparison between the preference score 𝑠𝑢𝑖 and the quantile 𝛽𝐾𝑢 ,

thus avoiding the need to directly estimate 𝜋𝑢𝑖 . This makes the

Top-𝐾 truncation both computationally efficient and easy to opti-

mize. To handle the complexities of quantile estimation, we further

propose a simple Monte Carlo-based quantile estimation strategy in

Section 3.1.3, which guarantees both high efficiency and precision.

Notably, while quantile-based techniques have been explored in

previous works – e.g., AATP [3] employs quantiles to optimize Top-

𝐾 accuracy, and SONG@𝐾 [59] adopts quantile-related thresholds

for bilevel compositional optimization – we adapt this approach

specifically for NDCG@𝐾 optimization in the context of recommen-

dation. Specifically, we propose a novel tailored recommendation

loss and a dedicated quantile estimation strategy, which address the

unique challenges in RS. Readers can refer to Sections 3.2.2 and 5

for a detailed comparison between our proposed loss and existing

methods, as well as a discussion of their limitations.

3.1.2 Smooth Surrogate for NDCG@𝐾 . To tackle the discontinuity
challenge, we proceed to relax the discontinuous NDCG@𝐾 into a

smooth surrogate. Specifically, our approach focuses on deriving

a smooth upper bound for − log DCG@𝐾 , since optimizing this

upper bound is equivalent to lifting NDCG@𝐾1
[82, 84]. To ensure

mathematical well-definedness, we make a simple assumption that

DCG@𝐾 is non-zero, which is practical in optimization
2
.

Upper bound derivation. While several successful examples

(e.g., SL) of relaxing full-ranking metric DCG exist as references

[77, 82, 84], special care must be taken to account for the differ-

ences in DCG@𝐾 introduced by the Top-𝐾 truncation. Based on

the quantile technique and some specific relaxations, we can derive

an upper bound for − log DCG@𝐾 as follows:

− log DCG@𝐾 (𝑢)

(3.2)
= − log

©­«
∑︁
𝑖∈P𝑢

I(𝑠𝑢𝑖 ≥ 𝛽𝐾𝑢)
1

log
2
(𝜋𝑢𝑖 + 1)

ª®¬ (3.3a)

①
≤ − log

©­«
∑︁
𝑖∈P𝑢

I(𝑠𝑢𝑖 ≥ 𝛽𝐾𝑢)
1

𝜋𝑢𝑖

ª®¬ (3.3b)

= − log
©­«
∑︁
𝑖∈P𝑢

I(𝑠𝑢𝑖 ≥ 𝛽𝐾𝑢)
𝐻𝐾𝑢

1

𝜋𝑢𝑖

ª®¬ − log𝐻𝐾𝑢 (3.3c)

②
≤

∑︁
𝑖∈P𝑢

I(𝑠𝑢𝑖 ≥ 𝛽𝐾𝑢)
𝐻𝐾𝑢

(
− log

1

𝜋𝑢𝑖

)
− log𝐻𝐾𝑢 (3.3d)

③
≤

∑︁
𝑖∈P𝑢

I(𝑠𝑢𝑖 ≥ 𝛽𝐾𝑢) log𝜋𝑢𝑖 , (3.3e)

where 𝐻𝐾𝑢 =
∑
𝑖∈P𝑢 I(𝑠𝑢𝑖 ≥ 𝛽

𝐾
𝑢) is the number of Top-𝐾 positive

items (a.k.a. hits) for user 𝑢. Equation (3.3c) is well-defined since

𝐻𝐾𝑢 ≥ 1 due to our non-zero assumption
3
. Several important relax-

ations are applied in Equation (3.3): ① is due to log
2
(𝜋𝑢𝑖 + 1) ≤ 𝜋𝑢𝑖 ;

② is due to Jensen’s inequality [34]; ③ is due to 𝐻𝐾𝑢 ≥ 1.

The motivation behind the relaxations ① and ② is to simplify

the DCG term 1/log
2
(𝜋𝑢𝑖 + 1), which includes the ranking position

𝜋𝑢𝑖 in the denominator. It is important to note that the ranking

position 𝜋𝑢𝑖 is intricate and challenging to estimate accurately. Re-

taining 𝜋𝑢𝑖 in the denominator could exacerbate the optimization

1
Note that optimizing DCG@𝐾 and NDCG@𝐾 is equivalent, as the normalization

term IDCG@𝐾 is a constant.

2
This assumption is conventional in RS [4, 82, 84]. Note that DCG@𝐾 = 0 suggests the

worst result. During training, the scores of positive instances are rapidly elevated. As

a result, there is almost always at least one positive item within the Top-𝐾 positions,

ensuring DCG@𝐾 > 0. (cf. Appendix B.2 for empirical validation).

3
Since DCG@𝐾 > 0, there is at least one Top-𝐾 hit 𝑖 such that 𝑠𝑢𝑖 ≥ 𝛽𝐾𝑢 .

Breaking the Top-𝐾 Barrier: Advancing Top-𝐾 Ranking Metrics Optimization in Recommender Systems KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

difficulty, potentially leading to high estimation errors and numeri-

cal instability. SONG@𝐾 [59] is a representative example. Although

SONG@𝐾 utilizes a sophisticated compositional optimization tech-

nique [74], it still performs poorly in RS due to its highly skewed

gradient distributions (cf. Figure 1c and Table 2). Therefore, we fol-

low the successful paths of SL [82] and PSL [84], aiming to simplify

this complex structure. This significantly facilitates gradient-based

optimization and supports sampling-based estimation. Moreover,

in relaxation ③, we drop the term 𝐻𝐾𝑢 to reduce computational

complexity. While retaining this term could potentially lead to im-

proved performance, we empirically find that the gains aremarginal,

whereas the additional computational overhead is significant.

Furthermore, we can express the above upper bound in terms

of the preference scores. Given the Heaviside step function 𝛿 (𝑥) =
I(𝑥 ≥ 0) [84], recall that 𝜋𝑢𝑖 =

∑
𝑗∈I I(𝑠𝑢 𝑗 ≥ 𝑠𝑢𝑖) =

∑
𝑗∈I 𝛿 (𝑑𝑢𝑖 𝑗),

where 𝑑𝑢𝑖 𝑗 = 𝑠𝑢 𝑗 − 𝑠𝑢𝑖 , we can rewrite the upper bound (3.3e) as:

(3.3e) =
∑︁
𝑖∈P𝑢

𝛿 (𝑠𝑢𝑖 − 𝛽𝐾𝑢) · log
©­«
∑︁
𝑗∈I

𝛿 (𝑑𝑢𝑖 𝑗)ª®¬ . (3.4)

Smoothing Heaviside function. Note that Equation (3.4) is still

discontinuous due to the Heaviside step function 𝛿 (·). To address

this, following the conventional approach, we approximate 𝛿 (·) by
two continuous activation functions 𝜎𝑤 (·) and 𝜎𝑑 (·), resulting in
the following recommendation loss — SoftmaxLoss@𝐾 (SL@𝐾):

LSL@𝐾 (𝑢) =
∑︁
𝑖∈P𝑢

𝜎𝑤 (𝑠𝑢𝑖 − 𝛽𝐾𝑢)︸ ︷︷ ︸
weight term: 𝑤𝑢𝑖

· log
©­«
∑︁
𝑗∈I

𝜎𝑑 (𝑑𝑢𝑖 𝑗)
ª®¬︸ ︷︷ ︸

SL term: LSL (𝑢,𝑖)

. (3.5)

To approximate the Heaviside step function 𝛿 (·), two conventional

activation functions are widely adopted — the exponential function

𝑒𝑥/𝜏𝑑 and the sigmoid function 1/(1 + 𝑒−𝑥/𝜏𝑤), where 𝜏𝑑 and 𝜏𝑤
are temperature hyperparameters. The exponential function serves

as an upper bound of 𝛿 (·) and has been employed in SL, while

the sigmoid function provides a tighter approximation of 𝛿 (·) and
has been utilized in BPR [62]. Here we select 𝜎𝑑 as exponential

and 𝜎𝑤 as sigmoid in Equation (3.5). This configuration guaran-

tees that SL@𝐾 serves as a tight upper bound for − log DCG@𝐾

(cf. Theorem 3.2 in Section 3.2). In contrast, if both activations are

chosen as sigmoid, the upper bound relation does not hold; if both

are chosen as exponential, the bound is not as tight as in our setting.

For detailed discussions, please refer to Appendix B.1.

As shown in Equation (3.5), SL@𝐾 can be interpreted as a spe-

cific weighted Softmax Loss, where each positive interaction (𝑢, 𝑖)
in SL (cf. Equation (2.2)) is assigned a quantile-based weight 𝑤𝑢𝑖 .
Intuitively,𝑤𝑢𝑖 serves to assign larger weights to positive instances

with higher scores 𝑠𝑢𝑖 , emphasizing those ranked within the Top-𝐾

positions during optimization (i.e., those whose scores exceed the

quantile). This aligns with the principle of Top-𝐾 ranking metrics.

3.1.3 Top-𝐾 Quantile Estimation. Now the question lies in how to

estimate the Top-𝐾 quantile 𝛽𝐾𝑢 efficiently and accurately. While

quantile estimation [2, 21, 40] has been extensively studied in the

field of statistics, these methods may not be appropriate in our sce-

narios. Given that the quantile evolves during training and the large

scale of item set in RS, SL@𝐾 places high demands on estimation

(a) Quantile distribution.

0 2500 5000 7500 10000 12500
Users

0.2

0.3

0.4

0.5

0.6

0.7

Q
ua

nt
ile

s

20
u

20
u

(b) Quantile estimation.

Figure 2: (a) Quantile distribution. The distributions of ideal
quantiles 𝛽20

𝑢 and the positive/negative scores are illustrated
using Kernel Density Estimation (KDE) [54]. (b) Quantile
estimation. The estimated quantile ˆ𝛽20

𝑢 and ideal quantile 𝛽20

𝑢

are illustrated. The estimation error is 0.06 ± 0.03.

efficiency. To address this, our work develops a simple Monte Carlo-

based estimation strategy. Specifically, we randomly sample a small

set of 𝑁 items for each user and estimate the Top-𝐾 quantile among

these sampled items. The computational complexity of this method

is 𝑂 (|U|𝑁 log𝑁), as it only requires sorting the sampled items,

which significantly reduces the computational overhead compared

to sorting the entire item set (i.e., 𝑂 (|U||I| log |I |)).
Theoretical guarantees. Despite its simplicity, our quantile es-

timation strategy has theoretical guarantees. To ensure rigor and

facilitate generalization to the continuous case, we follow the con-

ventional definition of the 𝑝-th quantile [2]. In the context of RS,

the 𝑝-th quantile is exactly the Top-(1 − 𝑝) |I| quantile. We have:

Theorem 3.1 (Monte Carlo quantile estimation). Given the cu-
mulative distribution function (c.d.f.) 𝐹𝑢 (𝑠) of the preference scores
𝑠𝑢𝑖 for user 𝑢, for any 𝑝 ∈ (0, 1), the 𝑝-th quantile is defined as
𝜃
𝑝
𝑢 := 𝐹−1

𝑢 (𝑝) = inf{𝑠 : 𝐹𝑢 (𝑠) ≥ 𝑝}. In Monte Carlo quantile estima-

tion, we randomly sample 𝑁 preference scores {𝑠𝑢 𝑗 }𝑁𝑗=1

i.i.d.∼ 𝐹𝑢 (𝑠).
The estimated 𝑝-th quantile is defined as ˆ𝜃

𝑝
𝑢 := 𝐹−1

𝑢 (𝑝), where 𝐹𝑢 (𝑠) =
1

𝑁

∑𝑁
𝑗=1

I(𝑠𝑢 𝑗 ≤ 𝑠) is the empirical c.d.f. of the sampled scores. Then,
for any 𝜀 > 0, we have

Pr

(��� ˆ𝜃𝑝𝑢 − 𝜃𝑝𝑢 ��� > 𝜀) ≤ 4𝑒−2𝑁𝛿2

𝜀 , (3.6)

where 𝛿𝜀 = min{𝐹𝑢 (𝜃𝑝𝑢 + 𝜀) − 𝑝, 𝑝 − 𝐹𝑢 (𝜃
𝑝
𝑢 − 𝜀)}. Specifically, in the

discrete RS scenarios, the Top-𝐾 quantile 𝛽𝐾𝑢 is exactly 𝜃1−𝐾/|I |
𝑢 .

The proof is provided in Appendix C.1. Theorem 3.1 provides

the theoretical foundation for sampling-based quantile estimation —

the error between the estimated and ideal quantile is bounded by a

function that decreases exponentially with the sample size 𝑁 . This

implies that the Top-𝐾 quantile 𝛽𝐾𝑢 can be estimated to arbitrary

precision given a sufficiently large 𝑁 .

Practical strategies. In practice, our Monte Carlo-based quantile

estimation strategy can be further improved by leveraging the prop-

erties of RS. As shown in Figure 2a, the scores of positive items

are typically much higher than those of negative items, and the

Top-𝐾 quantile is often located within the range of positive item

scores. Therefore, it is more effective to retain all positive instances

and randomly sample a small set of negative instances for quantile

estimation. This strategy, though simple, yields more accurate re-

sults. Figure 2b provides an example of estimated quantiles across

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Weiqin Yang et al.

users on the Electronic dataset, with a sample size of 𝑁 = 1000.

The estimated quantile
ˆ𝛽20

𝑢 closely matches the ideal quantile 𝛽20

𝑢 ,

with an average deviation of only 0.06. Further analyses and results

can be found in Appendix C. The overall optimization process for

SL@𝐾 is also summarized in Algorithm C.1.

3.2 Analyses of SL@𝐾

3.2.1 Properties of SL@𝐾 . Our proposed SL@𝐾 offers several de-

sirable properties (P), as summarized below:

(P1) Theoretical guarantees. We establish a theoretical connec-

tion between SL@𝐾 and NDCG@𝐾 as follows:

Theorem 3.2 (NDCG@𝐾 surrogate). For any user 𝑢, if the Top-𝐾
hits 𝐻𝐾𝑢 > 1

4, SL@𝐾 serves as an upper bound of − log DCG@𝐾 ,
i.e.,

− log DCG@𝐾 (𝑢) ≤ LSL@𝐾 (𝑢). (3.7)

When the Top-𝐾 hits 𝐻𝐾𝑢 = 1, a marginally looser yet effective bound
holds, i.e., − 1

2
log DCG@𝐾 (𝑢) ≤ LSL@𝐾 (𝑢).

The proof is provided in Appendix B.2. Theorem 3.2 reveals

that minimizing SL@𝐾 leads to improved NDCG@𝐾 , ensuring the

theoretical effectiveness of SL@𝐾 in Top-𝐾 recommendation.

(P2) Ease of implementation. Compared to SL, SL@𝐾 introduces

only a quantile-based weight𝑤𝑢𝑖 . Given the widespread adoption

of SL in RS, SL@𝐾 can be seamlessly integrated into existing rec-

ommendation frameworks with minimal modifications.

(P3) Computational efficiency. The utilization of the Monte

Carlo strategy for quantile estimation in SL@𝐾 (cf. Section 3.1.3)

ensures computational efficiency. The conventional SL has a time

complexity of 𝑂 (|U|𝑃𝑁), where 𝑃 denotes the average number of

positive items per user, and 𝑁 denotes the sample size satisfying

𝑁 ≪ |I|. Compared to SL, SL@𝐾 only introduces an additional

complexity of 𝑂 (|U|𝑁 log𝑁) for quantile estimation, which is

typically negligible in practice (cf. Figure 1b).

(P4) Gradient stability. SL@𝐾 exhibits a moderate gradient dis-

tribution comparable to that of SL (cf. Figure 1c), which contributes

to its training stability and data utilization effectiveness. This prop-

erty is mainly attributed to the bounded weight𝑤𝑢𝑖 ∈ (0.1, 1) with
sigmoid temperature 𝜏𝑤 ≥ 1, thus not significantly amplifying

gradient variance. In contrast, other NDCG@𝐾 surrogate losses,

including LambdaLoss@𝐾 [31] and SONG@𝐾 [59], are usually

hindered by the excessively long-tailed gradients (cf. Figure 1c).

(P5) Noise robustness. False positive noise [12] is prevalent in RS,

arising from various factors such as clickbait [75], item position bias

[29], or accidental interactions [1]. Recent studies have shown that

such noise can significantly mislead model training and degrade

performance [79]. Interestingly, the introduction of weight𝑤𝑢𝑖 in

SL@𝐾 helps mitigate this issue. In fact, the false positives, which

often resemble negative instances, tend to have lower preference

scores 𝑠𝑢𝑖 than the true positives. As a result, these noisy instances

typically receive smaller weights𝑤𝑢𝑖 (which are positively corre-

lated with 𝑠𝑢𝑖) and contribute less in model training. This enhances

the model’s robustness against false positive noise, as demonstrated

in the gradient analysis in Appendix B.3.

4
The assumption 𝐻𝐾𝑢 > 1 is commonly satisfied in practice, as the training process

tends to increase the scores of positive items, making them typically larger than those

of negative items. Appendix B.2 provides further empirical validation.

Table 1: Dataset statistics. Refer to Appendix D.1 for details.

Dataset #Users #Items #Interactions Density

Health 1,974 1,200 48,189 0.02034

Electronic 13,455 8,360 234,521 0.00208

Gowalla 29,858 40,988 1,027,464 0.00084

Book 135,109 115,172 4,042,382 0.00026

3.2.2 Comparison with Existing Losses. In this subsection, we delve
into the connections and differences between SL@𝐾 and other

closely related losses to provide further insights:

SL@𝐾 vs. SoftmaxLoss (SL). As discussed in Section 3.1.2, SL@𝐾
can be viewed as a specific weighted SL [82]. Although SL demon-

strates theoretical advantages due to its close connection with

NDCG, as well as practical benefits such as concise formulation

and computational efficiency, it does not account for the Top-𝐾

truncation. Our SL@𝐾 bridges this gap by accompanying each term

of SL with a quantile-based weight. As such, SL@𝐾 inherits the ad-

vantages of SL, while introducing additional merits, e.g., theoretical

connections to NDCG@𝐾 and robustness to false positive noise.

SL@𝐾 vs. LambdaLoss@𝐾 and SONG@𝐾 . LambdaLoss@𝐾 [31]

and SONG@𝐾 [59] take into account the Top-𝐾 truncation and have

shown promising results in other fields like document retrieval [45].

However, we find that their effectiveness in RS is compromised,

particularly given the large item space and sparse interactions.

Specifically, both of them suffer from the issue of long-tailed gra-

dients due to their inherent design. The gradients are dominated

by a few instances, while the majority of instances have negligi-

ble contributions, which may lead to data utilization inefficiency

and optimization instability. In contrast, SL@𝐾 exhibits moderate

gradients by leveraging the quantile technique and appropriate

relaxations, which addresses these issues and achieves superior

performance (cf. Figure 1c).

Beyond the gradient instability, LambdaLoss@𝐾 also faces ad-

ditional challenges on computational efficiency. Specifically, it re-

quires calculating exact rankings, which is computationally imprac-

tical in RS. Even worse, the skewed gradient distribution hinders the

sampling-based strategy to reduce computational overhead, since

the gradients of sampled instances may be either vanishingly small

or excessively large, leading to unstable optimization. In contrast,

SL@𝐾 is both theoretically sound and computationally efficient,

making it a more suitable choice for RS.

Notably, while SONG@𝐾 also employs a threshold to tackle

Top-𝐾 truncation similar to SL@𝐾 ’s quantile, SL@𝐾 differs sig-

nificantly from SONG@𝐾 in two aspects: (i) we follow the suc-

cessful approaches of SL [82] and PSL [84] to simplify and smooth

NDCG@𝐾 , which facilitates sampling-based estimation and opti-

mization, while SONG@𝐾 employs a compositional optimization

technique, which may not be effective in RS. (ii) we employ a simple

sampling-based strategy to estimate the threshold (quantile) with

theoretical guarantees, as opposed to the complex bilevel optimiza-

tion in SONG@𝐾 . These differences contribute to the significant

superiority of SL@𝐾 over SONG@𝐾 in terms of both recommen-

dation performance and practical applicability. Appendix A gives a

detailed discussion on these two losses.

Breaking the Top-𝐾 Barrier: Advancing Top-𝐾 Ranking Metrics Optimization in Recommender Systems KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

Table 2: Top-20 recommendation performance comparison of SL@𝐾 with existing losses. The best results are highlighted in
bold, and the best baselines are underlined. "Imp." denotes the improvement of SL@𝐾 over the best baseline.

Backbone Loss
Health Electronic Gowalla Book

Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20 Recall@20 NDCG@20

MF

BPR 0.1627 0.1234 0.0816 0.0527 0.1355 0.1111 0.0665 0.0453

GuidedRec 0.1568 0.1093 0.0644 0.0385 0.1135 0.0863 0.0518 0.0361

SONG@20 0.0874 0.0650 0.0708 0.0444 0.1237 0.0970 0.0747 0.0542

LLPAUC 0.1644 0.1209 0.0821 0.0499 0.1610 0.1189 0.1150 0.0811

SL 0.1719 0.1261 0.0821 0.0529 0.2064 0.1624 0.1559 0.1210

AdvInfoNCE 0.1659 0.1237 0.0829 0.0527 0.2067 0.1627 0.1557 0.1172

BSL 0.1719 0.1261 0.0834 0.0530 0.2071 0.1630 0.1563 0.1212

PSL 0.1718 0.1268 0.0838 0.0541 0.2089 0.1647 0.1569 0.1227

SL@20 (Ours) 0.1823 0.1390 0.0901 0.0590 0.2121 0.1709 0.1612 0.1269

Imp. % +6.05% +9.62% +7.52% +9.06% +1.53% +3.76% +2.74% +3.42%

LightGCN

BPR 0.1618 0.1203 0.0813 0.0524 0.1745 0.1402 0.0984 0.0678

GuidedRec 0.1550 0.1073 0.0657 0.0393 0.0921 0.0686 0.0468 0.0310

SONG@20 0.1353 0.0960 0.0816 0.0511 0.1261 0.0968 0.0820 0.0573

LLPAUC 0.1685 0.1207 0.0831 0.0507 0.1616 0.1192 0.1147 0.0810

SL 0.1691 0.1235 0.0823 0.0526 0.2068 0.1628 0.1567 0.1220

AdvInfoNCE 0.1706 0.1264 0.0823 0.0528 0.2066 0.1625 0.1568 0.1177

BSL 0.1691 0.1236 0.0823 0.0526 0.2069 0.1628 0.1568 0.1220

PSL 0.1701 0.1270 0.0830 0.0536 0.2086 0.1648 0.1575 0.1233

SL@20 (Ours) 0.1783 0.1371 0.0903 0.0591 0.2128 0.1729 0.1625 0.1280

Imp. % +4.51% +7.95% +8.66% +10.26% +2.01% +4.92% +3.17% +3.81%

XSimGCL

BPR 0.1496 0.1108 0.0777 0.0508 0.1966 0.1570 0.1269 0.0905

GuidedRec 0.1539 0.1088 0.0760 0.0473 0.1685 0.1277 0.1275 0.0951

SONG@20 0.1378 0.0948 0.0525 0.0320 0.1367 0.0985 0.1281 0.0964

LLPAUC 0.1519 0.1083 0.0781 0.0481 0.1632 0.1200 0.1363 0.1008

SL 0.1534 0.1113 0.0772 0.0490 0.2005 0.1570 0.1549 0.1207

AdvInfoNCE 0.1499 0.1072 0.0776 0.0489 0.2010 0.1564 0.1568 0.1179

BSL 0.1649 0.1201 0.0800 0.0507 0.2037 0.1597 0.1550 0.1207

PSL 0.1579 0.1143 0.0801 0.0507 0.2037 0.1593 0.1571 0.1228

SL@20 (Ours) 0.1753 0.1332 0.0869 0.0571 0.2095 0.1717 0.1624 0.1277

Imp. % +6.31% +10.91% +8.49% +12.40% +2.85% +7.51% +3.37% +3.99%

4 Experiments
We aim to answer the following research questions (RQs):

• RQ1: How does SL@𝐾 perform compared with existing losses?

• RQ2: Does SL@𝐾 exhibit consistent improvements across dif-

ferent NDCG@𝐾 metrics with varying 𝐾?

• RQ3: Does SL@𝐾 exhibit robustness against false positive noise?

• RQ4: Can SL@𝐾 be effectively applied to other information

retrieval (IR) tasks?

4.1 Experimental Setup
Datasets. To ensure fair comparisons, our experimental setup

closely follows the prior work of Wu et al. [81] and Yang et al.

[84]. We conduct experiments on four widely-used datasets: Health

[23, 50], Electronic [23, 50], Gowalla [14], and Book [23, 50]. Addi-

tionally, given the inefficiency of LambdaLoss@𝐾 [31] in handling

these large datasets, we further evaluate its performance on two rel-

atively smaller datasets, i.e., MovieLens [22] and Food [48]. Detailed

dataset descriptions can be found in Table 1 and Appendix D.1.

Recommendation backbones. Following the settings in Yang

et al. [84], we evaluate the proposed losses on three backbones: MF

[41] (classic Matrix Factorization model), LightGCN [26] (SOTA

graph-based model), and XSimGCL [86] (SOTA contrastive-based

model). The implementation details can be found in Appendix D.3.

Baseline losses. We compare SL@𝐾 with the following baselines:

(i) Pairwise loss (BPR [62]); (ii) NDCG surrogate losses (GuidedRec

[60] and Softmax Loss (SL) [82]); (iii) NDCG@𝐾 surrogate losses

(LambdaLoss@𝐾 [31] and SONG@𝐾 [59]); (iv) Partial AUC surro-

gate loss (LLPAUC [67]); (v) Advanced SL-based losses (AdvInfoNCE

[87], BSL [81], and PSL [84]). Refer to Appendix D.4 for details.

Hyperparameter settings. For fair comparisons, SL@𝐾 adopts

the same temperature parameter 𝜏𝑑 as the optimal 𝜏 in SL. SL@𝐾

also uses the same negative sampling strategy as SL for both train-

ing and quantile estimation with sample size 𝑁 = 1000. For all

baselines, we follow the hyperparameter settings provided in origi-

nal papers and further tune them to achieve the best performance.

We provide the details in Appendix D.4, optimal hyperparameters

in Appendix D.5, and supplementary results in Appendix E.

Information Retrieval Tasks. To extend SL@𝐾 to other fields,

we adapt it to three different IR tasks: (i) Learning to rank (LTR),
aiming to order a list of candidate items according to their relevance

to a given query; (ii) Sequential recommendation (SeqRec),

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Weiqin Yang et al.

Table 3: NDCG@𝐾 (D@𝐾) comparisons with varying 𝐾 on Health and Electronic datasets and MF backbone. The best results
are highlighted in bold, and the best baselines are underlined. "Imp." denotes the improvement of SL@𝐾 over the best baseline.

Method
Health Electronic

D@5 D@10 D@20 D@50 D@75 D@100 D@5 D@10 D@20 D@50 D@75 D@100

BPR 0.0940 0.1037 0.1234 0.1621 0.1804 0.1925 0.0345 0.0419 0.0527 0.0690 0.0777 0.0845

GuidedRec 0.0769 0.0881 0.1093 0.1484 0.1671 0.1811 0.0228 0.0294 0.0385 0.0551 0.0635 0.0703

SONG 0.0353 0.0392 0.0488 0.0709 0.0834 0.0930 0.0316 0.0393 0.0493 0.0661 0.0744 0.0803

SONG@𝐾 0.0503 0.0535 0.0650 0.0896 0.1037 0.1135 0.0276 0.0349 0.0444 0.0581 0.0651 0.0706

LLPAUC 0.0887 0.0996 0.1209 0.1592 0.1765 0.1892 0.0305 0.0388 0.0499 0.0686 0.0778 0.0848

SL 0.0922 0.1037 0.1261 0.1620 0.1791 0.1924 0.0353 0.0430 0.0529 0.0696 0.0783 0.0845

AdvInfoNCE 0.0926 0.1038 0.1237 0.1608 0.1789 0.1920 0.0341 0.0423 0.0527 0.0697 0.0782 0.0843

BSL 0.0922 0.1037 0.1261 0.1620 0.1791 0.1924 0.0344 0.0425 0.0530 0.0691 0.0776 0.0843

PSL 0.0940 0.1048 0.1268 0.1613 0.1789 0.1912 0.0356 0.0434 0.0541 0.0700 0.0784 0.0845

SL@𝐾 (Ours) 0.1080 0.1190 0.1390 0.1736 0.1916 0.2035 0.0402 0.0484 0.0590 0.0760 0.0844 0.0908

Imp. % +14.89% +13.55% +9.62% +7.09% +6.21% +5.71% +12.92% +11.52% +9.06% +8.57% +7.65% +7.08%

Table 4: Performance exploration of SL@𝐾 on NDCG@𝐾 ′ with varying 𝐾 and 𝐾 ′. The best results are highlighted in bold.

SL@𝐾
Health Electronic

D@5 D@10 D@20 D@50 D@75 D@100 D@5 D@10 D@20 D@50 D@75 D@100

SL@5 0.1080 0.1180 0.1379 0.1724 0.1906 0.2032 0.0402 0.0480 0.0583 0.0753 0.0839 0.0900

SL@10 0.1077 0.1190 0.1377 0.1734 0.1909 0.2028 0.0400 0.0484 0.0583 0.0755 0.0839 0.0901

SL@20 0.1076 0.1188 0.1390 0.1733 0.1909 0.2029 0.0400 0.0483 0.0590 0.0759 0.0837 0.0900

SL@50 0.1062 0.1167 0.1364 0.1736 0.1901 0.2020 0.0398 0.0481 0.0587 0.0760 0.0842 0.0907

SL@75 0.1073 0.1179 0.1387 0.1734 0.1916 0.2031 0.0397 0.0481 0.0587 0.0759 0.0844 0.0907

SL@100 0.1071 0.1177 0.1375 0.1727 0.1904 0.2035 0.0399 0.0481 0.0587 0.0759 0.0843 0.0908

SL (@∞) 0.0922 0.1037 0.1261 0.1620 0.1791 0.1924 0.0353 0.0430 0.0529 0.0696 0.0783 0.0845

focusing on next item prediction in a user’s interaction sequence;

and (iii) Link prediction (LP), predicting links between two nodes

in a graph. We closely follow the experimental settings in prior

work [36, 43, 57] and provide the details in Appendix D.6.

4.2 Performance Comparison
SL@𝐾 vs. Baselines (RQ1). Table 2 presents the performance

comparison of SL@𝐾 against existing losses. As shown, SL@𝐾 con-

sistently outperforms all competing losses across various datasets

and backbones. The improvements are substantial, with an average

increase of 6.03% over the best baselines. This improvement can be

attributed to the closer alignment of SL@𝐾 with NDCG@𝐾 , high-

lighting the importance of explicitly modeling Top-𝐾 truncation

during optimization, as opposed to NDCG surrogate losses. Notably,

SL@𝐾 also demonstrates strong performance on Recall@𝐾 . This is

because optimizing NDCG@𝐾 naturally increases the positive hits

in Top-𝐾 positions, thereby enhancing Recall@𝐾 performance.

SL@𝐾 vs. NDCG@𝐾 surrogate losses (RQ1). We further com-

pare SL@𝐾 with existingNDCG@𝐾 surrogate losses, i.e., SONG@𝐾

and LambdaLoss@𝐾 , in Tables 2 and 17. Although these losses are

also designed to optimize NDCG@𝐾 , our experiments show that

SL@𝐾 consistently outperforms them, with significant improve-

ments of over 70% and 13% in NDCG@20 compared to SONG@𝐾

and LambdaLoss@𝐾 , respectively. The unsatisfactory performance

of these surrogate losses can be attributed to their unstable and inef-

fective optimization process, as discussed in Section 3.2.2. Moreover,

LambdaLoss@𝐾 incurs significantly higher computational costs

compared to SL@𝐾 . While sampling strategies could be employed

to accelerate LambdaLoss@𝐾 (i.e., LambdaLoss@𝐾-S in Table 17),

they lead to substantial performance degradation (over 30%).

NDCG@𝐾 performance with varying 𝐾 (RQ2). Table 3 illus-

trates the NDCG@𝐾 performance across different values of 𝐾 . Ex-

perimental results show that SL@𝐾 consistently outperforms the

baseline methods in all NDCG@𝐾 metrics. We also observe that as

𝐾 increases, the magnitude of the improvements decreases, which

aligns with our intuition. Specifically, the Top-𝐾 truncation has a

greater impact when𝐾 is small. As𝐾 increases, NDCG@𝐾 degrades

to the full-ranking metric NDCG. Consequently, the advantage of

optimizing for NDCG@𝐾 diminishes as 𝐾 grows.

Top-𝐾 recommendation consistency (RQ2). Table 4 presents

the performance of NDCG@𝐾 ′ for SL@𝐾 with varying values of

𝐾,𝐾 ′ in {5, 10, 20, 50, 75, 100}. We observe that the best NDCG@𝐾 ′

performance is always achieved when 𝐾 ′ = 𝐾 in SL@𝐾 . This

consistency aligns with our theoretical analysis in Section 3.2.1,

i.e., SL@𝐾 is oriented towards optimizing NDCG@𝐾 rather than

other NDCG@𝐾 ′ when 𝐾 ≠ 𝐾 ′. For instance, SL@20 achieves the

best NDCG@20 performance, but its performance on NDCG@50 is

lower compared to SL@50. Nonetheless, SL@𝐾 always outperforms

SL(@∞), emphasizing the effectiveness of SL@𝐾 in real-world RS.

Noise Robustness (RQ3). In Figure 3, we assess the robustness

of SL@𝐾 to false positive instances. Following Wu et al. [81], we

manually introduce a certain ratio of negative instances as noisy

positive instances during training. As the noise ratio increases,

SL@𝐾 demonstrates greater improvements over SL (up to 24%),

Breaking the Top-𝐾 Barrier: Advancing Top-𝐾 Ranking Metrics Optimization in Recommender Systems KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

0% 5% 10% 15% 20%
Noise Ratio

0.110

0.115

0.120

0.125

0.130

0.135

0.140
Health

0% 5% 10% 15% 20%
Noise Ratio

0.045

0.048

0.050

0.053

0.055

0.058

Electronic

0%

4%

8%

12%

16%

20%

0%

4%

8%

12%

16%

20%

24%

SL (NDCG@20) SL@20 (NDCG@20) Imp. (%)

Figure 3: NDCG@20 performance of SL@𝐾 compared with
SL under varying ratios of imposed false positive instances.

Table 5: LTR results on WEB10K, WEB30K [58], and Istella
[15] datasets (metrics: NDCG@5).

Loss WEB10K WEB30K Istella
ListMLE [83] 0.4145 0.4433 0.5671

ListNet [8] 0.4225 0.4594 0.6290

RankNet [6] 0.4253 0.4426 0.6189

LambdaLoss@5 [31] 0.4320 0.4496 0.5860

NeuralNDCG [57] 0.4338 0.4524 0.5823

SL [82] 0.4310 0.4552 0.6327

SL@5 (Ours) 0.4633 0.4895 0.6412

Imp. % +6.80% +6.55% +1.34%

indicating superior robustness to false positive noise. This finding

is consistent with our analysis in Section 3.2.1.

Application to other IR tasks (RQ4). We adapt SL@𝐾 to three

different IR tasks: LTR (Table 5), SeqRec (Table 6), and LP (Table 7).

Results show that SL@𝐾 consistently outperforms baseline rank-

ing losses (e.g., LambdaLoss@𝐾 [31] and NeuralNDCG [57]) and

classification losses (e.g., BCE [36] and SL [82]) across all tasks,

demonstrating its versatility for general IR applications.

5 Related Work
Recommendation losses. Recommendation losses play a vital

role in recommendation models optimization. The earliest works

treat recommendation as a simple regression or binary classification

problem, utilizing pointwise losses such as MSE [25] and BCE [28].

However, due to neglecting the ranking essence in RS, these point-

wise losses usually result in inferior performance. To address this,

pairwise losses such as BPR [44, 62] have been proposed. BPR aims

to learn a partial order among items and serves as a surrogate for

AUC. Following BPR, Softmax Loss (SL) [82] extends the pairwise

ranking to listwise by introducing the Plackett-Luce models [47, 56]

or contrastive learning principles [13, 53]. SL has been proven to

be an NDCG surrogate and achieves SOTA performance [4, 84].

Recent works have further improved ranking losses from various

approaches. For example, robustness enhancements to SL have been

explored via Distributionally Robust Optimization (DRO) [65], as

seen in AdvInfoNCE [87], BSL [81] and PSL [84]. Other approaches

directly optimize NDCG, including LambdaRank [5], LambdaLoss

[77], SONG [59], and PSL [84]. There are also works focusing on

alternative surrogate approaches for NDCG, including ranking-

based [10], Gumbel-based [19], and neural-based [60] methods.

Table 6: SeqRec results onBeauty andGames [23, 50] datasets.

Loss
Beauty Games

Hit@20 NDCG@20 Hit@20 NDCG@20

BCE [36] 0.1130 0.0484 0.1577 0.0671

SL [82] 0.1578 0.0766 0.2243 0.1024

SL@20 (Ours) 0.1586 0.0780 0.2283 0.1045

Imp. % +0.51% +1.82% +1.78% +2.05%

Table 7: LP results on Cora and Citeseer [64] datasets.

Loss
Cora Citeseer

Hit@20 MRR Hit@20 MRR

BCE [36] 0.3643 0.1482 0.3560 0.1424

SL [82] 0.4668 0.1772 0.4989 0.1942

SL@20 (Ours) 0.4839 0.1812 0.5099 0.1963

Imp. % +3.65% +2.25% +2.20% +1.08%

Despite recent advancements, most ranking losses struggle in

practical Top-𝐾 recommendation, where only the top-ranked items

are retrieved. Losses ignoring Top-𝐾 truncation may face perfor-

mance bottlenecks. To address this, LambdaLoss@𝐾 and SONG@𝐾

optimize NDCG@𝐾 using elegant lambda weights and composi-

tional optimization, respectively, but their performance in RS re-

mains unsatisfactory, as discussed in Section 4.2. Other methods,

such as AATP [3], LLPAUC [67], and OPAUC [66], target metrics

like Precision@𝐾 and Recall@𝐾 , yet their theoretical connections

to NDCG@𝐾 remain unclear. While AATP employs a quantile tech-

nique, it lacks a theoretical foundation and suffers from inefficiency

issues, making it impractical for RS. LLPAUC and OPAUC rely on

complex adversarial training, potentially limiting their effectiveness

and applicability.

6 Conclusion and Future Directions
This work introduces SoftmaxLoss@𝐾 (SL@𝐾), a novel recommen-

dation loss tailored for optimizing NDCG@𝐾 . SL@𝐾 employs a

quantile-based technique to address the Top-𝐾 truncation challenge

and derives a smooth approximation to tackle the discontinuity

issue. We establish a tight bound between SL@𝐾 and NDCG@𝐾 ,

demonstrating its theoretical effectiveness. Beyond its theoretical

soundness, SL@𝐾 offers a concise form, introducing only quantile-

based weights atop the conventional Softmax Loss, making it both

easy to implement and computationally efficient.

Looking ahead, a promising direction is to develop incremental

quantile estimation methods to further improve the efficiency of

SL@𝐾 and enable incremental learning in RS. Additionally, since

Top-𝐾 metrics are widely used, further exploring the application

of SL@𝐾 in other domains, such as multimedia retrieval, question

answering, and anomaly detection, is valuable.

Acknowledgments
Thiswork is supported by the Zhejiang Province "JianBingLingYan+X"

Research and Development Plan (2025C02020).

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Weiqin Yang et al.

References
[1] Panagiotis Adamopoulos and Alexander Tuzhilin. 2014. On unexpectedness in

recommender systems: Or how to better expect the unexpected. ACMTransactions
on Intelligent Systems and Technology (TIST) 5, 4 (2014), 1–32.

[2] Peter J Bickel and Kjell A Doksum. 2015. Mathematical statistics: basic ideas and
selected topics, volumes I-II package. Chapman and Hall/CRC.

[3] Stephen Boyd, Corinna Cortes, Mehryar Mohri, and Ana Radovanovic. 2012.

Accuracy at the top. Advances in neural information processing systems 25 (2012).
[4] Sebastian Bruch, Xuanhui Wang, Michael Bendersky, and Marc Najork. 2019.

An analysis of the softmax cross entropy loss for learning-to-rank with binary

relevance. In Proceedings of the 2019 ACM SIGIR international conference on theory
of information retrieval. 75–78.

[5] Christopher Burges, Robert Ragno, and Quoc Le. 2006. Learning to rank with

nonsmooth cost functions. Advances in neural information processing systems 19
(2006).

[6] Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamilton,

and Greg Hullender. 2005. Learning to rank using gradient descent. In Proceedings
of the 22nd international conference on Machine learning. 89–96.

[7] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning

to rank: from pairwise approach to listwise approach. In Proceedings of the 24th
international conference on Machine learning. 129–136.

[8] Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. 2007. Learning

to rank: from pairwise approach to listwise approach. In Proceedings of the 24th
international conference on Machine learning. 129–136.

[9] George Casella and Roger Berger. 2024. Statistical inference. CRC Press.

[10] Olivier Chapelle and Mingrui Wu. 2010. Gradient descent optimization of

smoothed information retrieval metrics. Information retrieval 13 (2010), 216–235.
[11] Jiawei Chen, Hande Dong, Yang Qiu, Xiangnan He, Xin Xin, Liang Chen, Guli

Lin, and Keping Yang. 2021. AutoDebias: Learning to debias for recommendation.

In Proceedings of the 44th international ACM SIGIR conference on research and
development in information retrieval. 21–30.

[12] Jiawei Chen, Hande Dong, Xiang Wang, Fuli Feng, Meng Wang, and Xiangnan

He. 2023. Bias and debias in recommender system: A survey and future directions.

ACM Transactions on Information Systems 41, 3 (2023), 1–39.
[13] Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. 2020. A

simple framework for contrastive learning of visual representations. In Interna-
tional conference on machine learning. PMLR, 1597–1607.

[14] Eunjoon Cho, Seth A Myers, and Jure Leskovec. 2011. Friendship and mobility:

user movement in location-based social networks. In Proceedings of the 17th
ACM SIGKDD international conference on Knowledge discovery and data mining.
1082–1090.

[15] Domenico Dato, Claudio Lucchese, Franco Maria Nardini, Salvatore Orlando,

Raffaele Perego, Nicola Tonellotto, and Rossano Venturini. 2016. Fast ranking

with additive ensembles of oblivious and non-oblivious regression trees. ACM
Transactions on Information Systems (TOIS) 35, 2 (2016), 1–31.

[16] Zeshan Fayyaz, Mahsa Ebrahimian, Dina Nawara, Ahmed Ibrahim, and Rasha

Kashef. 2020. Recommendation systems: Algorithms, challenges, metrics, and

business opportunities. applied sciences 10, 21 (2020), 7748.
[17] Chongming Gao, Kexin Huang, Jiawei Chen, Yuan Zhang, Biao Li, Peng Jiang,

Shiqi Wang, Zhong Zhang, and Xiangnan He. 2023. Alleviating matthew effect

of offline reinforcement learning in interactive recommendation. In Proceedings
of the 46th international ACM SIGIR conference on research and development in
information retrieval. 238–248.

[18] Chongming Gao, ShiqiWang, Shijun Li, Jiawei Chen, Xiangnan He,Wenqiang Lei,

Biao Li, Yuan Zhang, and Peng Jiang. 2023. CIRS: Bursting filter bubbles by coun-

terfactual interactive recommender system. ACM Transactions on Information
Systems 42, 1 (2023), 1–27.

[19] Aditya Grover, Eric Wang, Aaron Zweig, and Stefano Ermon. 2019. Stochastic

optimization of sorting networks via continuous relaxations. arXiv preprint
arXiv:1903.08850 (2019).

[20] Michael U Gutmann and Aapo Hyvärinen. 2012. Noise-contrastive estimation

of unnormalized statistical models, with applications to natural image statistics.

Journal of machine learning research 13, 2 (2012).

[21] Lingxin Hao and Daniel Q Naiman. 2007. Quantile regression. Number 149. Sage.

[22] F Maxwell Harper and Joseph A Konstan. 2015. The movielens datasets: History

and context. Acm transactions on interactive intelligent systems (tiis) 5, 4 (2015),
1–19.

[23] Ruining He and Julian McAuley. 2016. Ups and downs: Modeling the visual

evolution of fashion trends with one-class collaborative filtering. In proceedings
of the 25th international conference on world wide web. 507–517.

[24] Ruining He and Julian McAuley. 2016. VBPR: visual bayesian personalized

ranking from implicit feedback. In Proceedings of the AAAI conference on artificial
intelligence, Vol. 30.

[25] Xiangnan He and Tat-Seng Chua. 2017. Neural factorization machines for sparse

predictive analytics. In Proceedings of the 40th International ACM SIGIR conference
on Research and Development in Information Retrieval. 355–364.

[26] Xiangnan He, Kuan Deng, Xiang Wang, Yan Li, Yongdong Zhang, and Meng

Wang. 2020. Lightgcn: Simplifying and powering graph convolution network for

recommendation. In Proceedings of the 43rd International ACM SIGIR conference
on research and development in Information Retrieval. 639–648.

[27] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng

Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th international
conference on world wide web. 173–182.

[28] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng

Chua. 2017. Neural collaborative filtering. In Proceedings of the 26th international
conference on world wide web. 173–182.

[29] Katja Hofmann, Anne Schuth, Alejandro Bellogin, and Maarten De Rijke. 2014.

Effects of position bias on click-based recommender evaluation. In Advances
in Information Retrieval: 36th European Conference on IR Research, ECIR 2014,
Amsterdam, The Netherlands, April 13-16, 2014. Proceedings 36. Springer, 624–630.

[30] Neil Hurley andMi Zhang. 2011. Novelty and diversity in top-n recommendation–

analysis and evaluation. ACM Transactions on Internet Technology (TOIT) 10, 4
(2011), 1–30.

[31] Rolf Jagerman, Zhen Qin, Xuanhui Wang, Michael Bendersky, and Marc Najork.

2022. On optimizing top-k metrics for neural ranking models. In Proceedings
of the 45th International ACM SIGIR Conference on Research and Development in
Information Retrieval. 2303–2307.

[32] Ashish Jaiswal, Ashwin Ramesh Babu, Mohammad Zaki Zadeh, Debapriya Baner-

jee, and Fillia Makedon. 2020. A survey on contrastive self-supervised learning.

Technologies 9, 1 (2020), 2.
[33] Kalervo Järvelin and Jaana Kekäläinen. 2017. IR evaluation methods for retrieving

highly relevant documents. In ACM SIGIR Forum, Vol. 51. ACM New York, NY,

USA, 243–250.

[34] Johan Ludwig William Valdemar Jensen. 1906. Sur les fonctions convexes et les

inégalités entre les valeurs moyennes. Acta mathematica 30, 1 (1906), 175–193.
[35] Xu Ji, Joao F Henriques, and Andrea Vedaldi. 2019. Invariant information cluster-

ing for unsupervised image classification and segmentation. In Proceedings of the
IEEE/CVF international conference on computer vision. 9865–9874.

[36] Wang-Cheng Kang and Julian McAuley. 2018. Self-attentive sequential recom-

mendation. In 2018 IEEE international conference on data mining (ICDM). IEEE,
197–206.

[37] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-

mization. arXiv preprint arXiv:1412.6980 (2014).
[38] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph

convolutional networks. arXiv preprint arXiv:1609.02907 (2016).

[39] Hyeyoung Ko, Suyeon Lee, Yoonseo Park, and Anna Choi. 2022. A survey of

recommendation systems: recommendation models, techniques, and application

fields. Electronics 11, 1 (2022), 141.
[40] R Koenker. 2005. Quantile Regression Cambridge, UK: Cambridge Univ.

[41] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-

niques for recommender systems. Computer 42, 8 (2009), 30–37.
[42] Dong Li, Ruoming Jin, Jing Gao, and Zhi Liu. 2020. On sampling top-k rec-

ommendation evaluation. In Proceedings of the 26th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining. 2114–2124.

[43] Juanhui Li, Harry Shomer, Haitao Mao, Shenglai Zeng, Yao Ma, Neil Shah, Jiliang

Tang, and Dawei Yin. 2023. Evaluating graph neural networks for link predic-

tion: Current pitfalls and new benchmarking. Advances in Neural Information
Processing Systems 36 (2023), 3853–3866.

[44] Siyi Lin, Chongming Gao, Jiawei Chen, Sheng Zhou, Binbin Hu, Yan Feng, Chun

Chen, and Can Wang. 2025. How do recommendation models amplify popularity

bias? An analysis from the spectral perspective. In Proceedings of the Eighteenth
ACM International Conference on Web Search and Data Mining. 659–668.

[45] Tie-Yan Liu et al. 2009. Learning to rank for information retrieval. Foundations
and Trends® in Information Retrieval 3, 3 (2009), 225–331.

[46] Xiao Liu, Fanjin Zhang, Zhenyu Hou, Li Mian, Zhaoyu Wang, Jing Zhang, and Jie

Tang. 2021. Self-supervised learning: Generative or contrastive. IEEE transactions
on knowledge and data engineering 35, 1 (2021), 857–876.

[47] R Duncan Luce. 1959. Individual choice behavior. Vol. 4. Wiley New York.

[48] Bodhisattwa Prasad Majumder, Shuyang Li, Jianmo Ni, and Julian McAuley. 2019.

Generating personalized recipes from historical user preferences. arXiv preprint
arXiv:1909.00105 (2019).

[49] Pascal Massart. 1990. The tight constant in the Dvoretzky-Kiefer-Wolfowitz

inequality. The annals of Probability (1990), 1269–1283.

[50] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel.

2015. Image-based recommendations on styles and substitutes. In Proceedings
of the 38th international ACM SIGIR conference on research and development in
information retrieval. 43–52.

[51] Nicholas Metropolis, Arianna W Rosenbluth, Marshall N Rosenbluth, Augusta H

Teller, and Edward Teller. 1953. Equation of state calculations by fast computing

machines. The journal of chemical physics 21, 6 (1953), 1087–1092.
[52] Liqiang Nie, Wenjie Wang, Richang Hong, Meng Wang, and Qi Tian. 2019. Multi-

modal dialog system: Generating responses via adaptive decoders. In Proceedings
of the 27th ACM international conference on multimedia. 1098–1106.

[53] Aaron van den Oord, Yazhe Li, and Oriol Vinyals. 2018. Representation learning

with contrastive predictive coding. arXiv preprint arXiv:1807.03748 (2018).

Breaking the Top-𝐾 Barrier: Advancing Top-𝐾 Ranking Metrics Optimization in Recommender Systems KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

[54] Emanuel Parzen. 1962. On estimation of a probability density function and mode.

The annals of mathematical statistics 33, 3 (1962), 1065–1076.
[55] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory

Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. 2019.

Pytorch: An imperative style, high-performance deep learning library. Advances
in neural information processing systems 32 (2019).

[56] Robin L Plackett. 1975. The analysis of permutations. Journal of the Royal
Statistical Society Series C: Applied Statistics 24, 2 (1975), 193–202.

[57] Przemysław Pobrotyn and Radosław Białobrzeski. 2021. Neuralndcg: Direct

optimisation of a ranking metric via differentiable relaxation of sorting. arXiv
preprint arXiv:2102.07831 (2021).

[58] Tao Qin and Tie-Yan Liu. 2013. Introducing LETOR 4.0 Datasets. CoRR
abs/1306.2597 (2013). http://arxiv.org/abs/1306.2597

[59] Zi-Hao Qiu, Quanqi Hu, Yongjian Zhong, Lijun Zhang, and Tianbao Yang. 2022.

Large-scale stochastic optimization of NDCG surrogates for deep learning with

provable convergence. arXiv preprint arXiv:2202.12183 (2022).
[60] Ahmed Rashed, Josif Grabocka, and Lars Schmidt-Thieme. 2021. A guided learn-

ing approach for item recommendation via surrogate loss learning. In Proceedings
of the 44th International ACM SIGIR Conference on Research and Development in
Information Retrieval. 605–613.

[61] Zhaochun Ren, Shangsong Liang, Piji Li, Shuaiqiang Wang, and Maarten de Rijke.

2017. Social collaborative viewpoint regression with explainable recommenda-

tions. In Proceedings of the tenth ACM international conference on web search and
data mining. 485–494.

[62] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.

2009. BPR: Bayesian personalized ranking from implicit feedback. In Proceedings
of the Twenty-Fifth Conference on Uncertainty in Artificial Intelligence. 452–461.

[63] Herbert Robbins and Sutton Monro. 1951. A stochastic approximation method.

The annals of mathematical statistics (1951), 400–407.
[64] Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Galligher, and

Tina Eliassi-Rad. 2008. Collective classification in network data. AI magazine 29,
3 (2008), 93–93.

[65] Alexander Shapiro. 2017. Distributionally robust stochastic programming. SIAM
Journal on Optimization 27, 4 (2017), 2258–2275.

[66] Wentao Shi, Jiawei Chen, Fuli Feng, Jizhi Zhang, Junkang Wu, Chongming Gao,

and Xiangnan He. 2023. On the theories behind hard negative sampling for

recommendation. In Proceedings of the ACM Web Conference 2023. 812–822.
[67] Wentao Shi, Chenxu Wang, Fuli Feng, Yang Zhang, Wenjie Wang, Junkang Wu,

and Xiangnan He. 2024. Lower-Left Partial AUC: An Effective and Efficient

Optimization Metric for Recommendation. In Proceedings of the ACM on Web
Conference 2024. 3253–3264.

[68] Thiago Silveira, Min Zhang, Xiao Lin, Yiqun Liu, and Shaoping Ma. 2019. How

good your recommender system is? A survey on evaluations in recommendation.

International Journal of Machine Learning and Cybernetics 10 (2019), 813–831.
[69] Xiaoyuan Su. 2009. A Survey of Collaborative Filtering Techniques. (2009).

[70] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all

you need. Advances in neural information processing systems 30 (2017).
[71] Bohao Wang, Jiawei Chen, Changdong Li, Sheng Zhou, Qihao Shi, Yang Gao,

Yan Feng, Chun Chen, and Can Wang. 2024. Distributionally robust graph-

based recommendation system. In Proceedings of the ACM Web Conference 2024.
3777–3788.

[72] Bohao Wang, Feng Liu, Jiawei Chen, Xingyu Lou, Changwang Zhang, Jun Wang,

Yuegang Sun, Yan Feng, Chun Chen, and Can Wang. 2025. MSL: Not All To-

kens Are What You Need for Tuning LLM as a Recommender. arXiv preprint

arXiv:2504.04178 (2025).
[73] Bohao Wang, Feng Liu, Changwang Zhang, Jiawei Chen, Yudi Wu, Sheng Zhou,

Xingyu Lou, Jun Wang, Yan Feng, Chun Chen, et al. 2024. Llm4dsr: Leveraing

large language model for denoising sequential recommendation. arXiv preprint
arXiv:2408.08208 (2024).

[74] Mengdi Wang, Ethan X Fang, and Han Liu. 2017. Stochastic compositional

gradient descent: algorithms for minimizing compositions of expected-value

functions. Mathematical Programming 161 (2017), 419–449.

[75] Wenjie Wang, Fuli Feng, Xiangnan He, Hanwang Zhang, and Tat-Seng Chua.

2021. Clicks can be cheating: Counterfactual recommendation for mitigating

clickbait issue. In Proceedings of the 44th International ACM SIGIR Conference on
Research and Development in Information Retrieval. 1288–1297.

[76] Xiang Wang, Xiangnan He, Meng Wang, Fuli Feng, and Tat-Seng Chua. 2019.

Neural graph collaborative filtering. In Proceedings of the 42nd international ACM
SIGIR conference on Research and development in Information Retrieval. 165–174.

[77] Xuanhui Wang, Cheng Li, Nadav Golbandi, Michael Bendersky, and Marc Najork.

2018. The lambdaloss framework for ranking metric optimization. In Proceedings
of the 27th ACM international conference on information and knowledge manage-
ment. 1313–1322.

[78] Larry Wasserman. 2004. All of statistics: a concise course in statistical inference.
Springer Science & Business Media.

[79] Hongyi Wen, Longqi Yang, and Deborah Estrin. 2019. Leveraging post-click

feedback for content recommendations. In Proceedings of the 13th ACMConference
on Recommender Systems. 278–286.

[80] Jason Weston, Samy Bengio, and Nicolas Usunier. 2010. Large scale image

annotation: learning to rankwith joint word-image embeddings.Machine learning
81 (2010), 21–35.

[81] Junkang Wu, Jiawei Chen, Jiancan Wu, Wentao Shi, Jizhi Zhang, and Xiang

Wang. 2024. Bsl: Understanding and improving softmax loss for recommendation.

In 2024 IEEE 40th International Conference on Data Engineering (ICDE). IEEE,
816–830.

[82] Jiancan Wu, Xiang Wang, Xingyu Gao, Jiawei Chen, Hongcheng Fu, and Tianyu

Qiu. 2024. On the effectiveness of sampled softmax loss for item recommendation.

ACM Transactions on Information Systems 42, 4 (2024), 1–26.
[83] Fen Xia, Tie-Yan Liu, Jue Wang, Wensheng Zhang, and Hang Li. 2008. Listwise

approach to learning to rank: theory and algorithm. In Proceedings of the 25th
international conference on Machine learning. 1192–1199.

[84] Weiqin Yang, Jiawei Chen, Xin Xin, Sheng Zhou, Binbin Hu, Yan Feng, Chun Chen,

and CanWang. 2024. PSL: Rethinking and Improving Softmax Loss from Pairwise

Perspective for Recommendation. arXiv preprint arXiv:2411.00163 (2024).
[85] Zhilin Yang, William Cohen, and Ruslan Salakhudinov. 2016. Revisiting semi-

supervised learning with graph embeddings. In International conference on ma-
chine learning. PMLR, 40–48.

[86] Junliang Yu, Xin Xia, Tong Chen, Lizhen Cui, Nguyen Quoc Viet Hung, and

Hongzhi Yin. 2023. XSimGCL: Towards extremely simple graph contrastive

learning for recommendation. IEEE Transactions on Knowledge and Data Engi-
neering (2023).

[87] An Zhang, Leheng Sheng, Zhibo Cai, Xiang Wang, and Tat-Seng Chua. 2024.

Empowering Collaborative Filtering with Principled Adversarial Contrastive

Loss. Advances in Neural Information Processing Systems 36 (2024).
[88] Ziwei Zhu, JianlingWang, and James Caverlee. 2019. Improving top-k recommen-

dation via jointcollaborative autoencoders. In The World Wide Web Conference.
3483–3482.

http://arxiv.org/abs/1306.2597

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Weiqin Yang et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
ui

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

uj

0.0

0.1

0.2

0.3

0.4

0.5

Figure 4: The lambda weight 𝜇𝑢𝑖 𝑗 (≥ 0.005) of Top-20 items in
LambdaLoss@5.

A Analysis of NDCG@𝐾 Surrogate Losses
In this section, we provide additional analysis of NDCG@𝐾 surro-

gate losses, including LambdaLoss@𝐾 [31] and SONG@𝐾 [59]. We

investigate their gradient distributions, which may shed light on

their training instability and underperformance in RS.

LambdaLoss@𝐾 [31]. LambdaLoss@𝐾 incorporates the lambda

weights [5, 77] to optimize NDCG@𝐾 , and has shown promising

results in document retrieval [45]. In recommendation scenarios,

LambdaLoss@𝐾 can be viewed as the following BPR-like [62] loss:

L
LambdaLoss@𝐾 (𝑢) =

∑︁
𝑖∈P𝑢 , 𝑗∈N𝑢

𝜇𝑢𝑖 𝑗 · 𝜎softplus (𝑑𝑢𝑖 𝑗), (A.1)

where 𝜎
softplus

(𝑥) = log(1 + 𝑒𝑥) is the softplus activation function,

and 𝜇𝑢𝑖 𝑗 is the lambda weight, which is defined as

𝜇𝑢𝑖 𝑗 =


𝜂𝑢𝑖 𝑗

(
1 − 1

log
2
(𝜋𝑢𝑖 𝑗 + 1)

)−1

, if 𝜋𝑢𝑖 𝑗 := max{𝜋𝑢𝑖 , 𝜋𝑢 𝑗 } > 𝐾,

𝜂𝑢𝑖 𝑗 , otherwise,

(A.2)

and

𝜂𝑢𝑖 𝑗 =
1

log
2
(|𝜋𝑢𝑖 − 𝜋𝑢 𝑗 | + 1) −

1

log
2
(|𝜋𝑢𝑖 − 𝜋𝑢 𝑗 | + 2) . (A.3)

The term 𝜂𝑢𝑖 𝑗 represents the difference between the reciprocals of

adjacent discount factors 1/log
2
(·), causing the lambda weight 𝜇𝑢𝑖 𝑗

to rapidly decay to 0 as |𝜋𝑢𝑖 − 𝜋𝑢 𝑗 | increases, i.e., as the ranking
positions of the two items diverge. Consequently, during training,

only negative items ranked close to positive items receive signifi-

cant gradients, while most negative items are undertrained. This

behavior is counter-intuitive and leads to inefficient training.

Figure 4 illustrates the lambda weights 𝜇𝑢𝑖 𝑗 for the Top-20 items

in LambdaLoss@5. Results show that with the ranking differences

|𝜋𝑢𝑖 − 𝜋𝑢 𝑗 | approaching 20, 𝜇𝑢𝑖 𝑗 nearly vanishes (i.e., 𝜇𝑢𝑖 𝑗 < 0.005).

This implies that in an RS with |I | items, at most 40|I | lambda

weights exceed 0.005. This accounts for less than 1% of the total |I |2
lambda weights in practical RS scenarios, which typically involve

over 4K items. This clearly highlights the gradient vanishing issue

in LambdaLoss@𝐾 . On the other hand, a small fraction (i.e., 1/|I|)
of lambda weights exceed 0.3, dominating the gradients and dispro-

portionately influencing the optimization direction. This imbalance

increases training instability and hinders effective optimization.

Moreover, this means that we can not use a larger learning rate

to mitigate the issue of gradient vanishing during sampling esti-

mation. Sampling these few instances with large lambda weights

occasionally can cause numerical explosions, further complicat-

ing optimization. Overall, the extreme long-tailed distribution of

lambda weights poses significant challenges to optimization, which

cannot be resolved by simply tuning the learning rate.

Based on the above analysis, we summarize the limitations of

LambdaLoss@𝐾 in RS as follows:

• Computational inefficiency: The calculation of lambda weights

𝜇𝑢𝑖 𝑗 requires accurate item rankings 𝜋𝑢𝑖 and 𝜋𝑢 𝑗 , which ne-

cessitates a full sorting of items for each user at every iteration,

leading to a high computational complexity of𝑂 (|U||I| log |I |).
Therefore, LambdaLoss@𝐾 is impractical for large-scale RS with

extensive user and item spaces (cf. Figure 1b and Table 17).

• Gradient instability: Due to the large item space and the spar-

sity of positive instances in RS, most lambda weights 𝜇𝑢𝑖 𝑗 are

extremely small, since |𝜋𝑢𝑖 − 𝜋𝑢 𝑗 | tends to be large for negative

item 𝑗 that is ranked far from positive item 𝑖 . In our experiments,

we found that 99% of lambda weights are less than 0.005, sug-

gesting that the gradients of LambdaLoss@𝐾 are dominated

by a few training instances, while others contribute negligibly

(cf. Figures 1c and 4). This increases training instability and ham-

pers the data utilization efficiency.

• Sampling-unfriendly: To address the computational inefficiency,

onemay resort toMonte Carlo sampling [51] for LambdaLoss@𝐾

(cf. Appendix C.4). Specifically, for each user, we sample and

rank 𝑁 items, and the sampled ranking positions are multi-

plied by |I |/𝑁 to approximate the rankings 𝜋𝑢𝑖 and 𝜋𝑢 𝑗 in

lambda weights 𝜇𝑢𝑖 𝑗 . While this strategy reduces the complex-

ity to 𝑂 (|U|𝑁 log𝑁), the performance of the sampling-based

LambdaLoss@𝐾 is significantly degraded, which can be attrib-

uted to its high sensitivity to estimation errors. Specifically, the

instances with larger lambda weights 𝜇𝑢𝑖 𝑗 , which contribute sig-

nificantly to training, tend to have smaller |𝜋𝑢𝑖 −𝜋𝑢 𝑗 |. Therefore,
even small estimation errors in rankings can lead to substan-

tial deviations in lambda weights, resulting in a performance

degradation of over 30% in our experiments (cf. Table 17).

SONG@𝐾 [59]. SONG@𝐾 introduces the bilevel compositional

optimization technique [74] to optimize NDCG@𝐾 . Specifically,

SONG@𝐾 first smooths the DCG@𝐾 by approximating 𝜋𝑢𝑖 with

a continuous function 𝑔𝑢𝑖 =
∑
𝑗∈I 𝜎relu (𝑑𝑢𝑖 𝑗), where 𝜎relu (𝑥) =

max(0, 𝑥 + 1)2 is a surrogate for the Heaviside step function 𝛿 (𝑥).
Subsequently, SONG@𝐾 proposes a stochastic gradient estimator

𝐺SONG@𝐾 (𝑢) for ∇DCG@𝐾 (𝑢) as follows:

𝐺SONG@𝐾 (𝑢) = −
1

log 2

∑︁
𝑖∈P𝑢

𝜎
sigmoid

(𝑠𝑢𝑖 − 𝛽𝐾𝑢)
log

2

2
(𝑔𝑢𝑖 + 1) · (𝑔𝑢𝑖 + 1)

∇𝑔𝑢𝑖 , (A.4)

Breaking the Top-𝐾 Barrier: Advancing Top-𝐾 Ranking Metrics Optimization in Recommender Systems KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

Table 8: Different activation functions choices in SL@𝐾 .

(𝜎𝑤 , 𝜎𝑑) Sigmoid Exponential

Sigmoid ✗ (not upper bound) ✓ (Our SL@𝐾 loss)
Exponential ✗ (not upper bound) ✗ (not tight enough)

where 𝑔𝑢𝑖 is maintained as an exponential moving average [37] of

𝑔𝑢𝑖 , and 𝛽
𝐾
𝑢 is the Top-𝐾 quantile defined similarly to Equation (3.1)

and updated by the quantile regression [3, 21, 40] (cf. Appendix C.3).

Although SONG@𝐾 has theoretical guarantees for optimizing

NDCG@𝐾 , it encounters severe training instability due to the highly
long-tailed gradients. The underlying reason is that 𝑔𝑢𝑖 ∈ [0, 9|I |]
is nearly unbounded in real-world RS, where 𝑑𝑢𝑖 𝑗 ∈ [−2, 2]. This
results in substantial variance in the gradients, leading to extremely

diverse gradient distribution. Empirical results validate this issue,

where SONG@𝐾 exhibits significantly diverse gradients spanning

over seven orders of magnitude (cf. Figure 1c). This skewed gradient

distribution hampers the optimization process, as the model is

overwhelmed by the few instances with large gradients, while

the majority of instances remain undertrained, which limits the

training efficiency and stability. In contrast, SL@𝐾 has a muchmore

moderate gradient distribution due to (i) the bounded quantile-

based weight 𝑤𝑢𝑖 , and (ii) the Softmax-normalized SL gradients

∇LSL (𝑢, 𝑖), thus ensuring training stability.

B Additional Theoretical Analysis of SL@𝐾

In this section, we provide a detailed additional theoretical analysis

of our proposed SL@𝐾 loss. Particularly, Appendix B.1 discusses the

rationale behind the selection of the activation functions in SL@𝐾

(cf. Section 3.1.2). Appendix B.2 presents the proof of Theorem 3.2

(cf. Section 3.2.1). Finally, Appendix B.3 provides a gradient analysis

of SL@𝐾 to support the noise robustness analysis in Section 3.2.1.

B.1 Activation Functions in SL@𝐾

In Equation (3.5), we smooth SL@𝐾 by two conventional activation

functions, i.e., the sigmoid function 𝜎𝑤 (𝑥) = 1/(1 + exp(−𝑥/𝜏𝑤))
and the exponential function 𝜎𝑑 (𝑥) = exp(𝑥/𝜏𝑑), where 𝜏𝑤 and

𝜏𝑑 are the temperature parameters. In this section, we will discuss

the rationale behind the selection of these activation functions, as

summarized in Table 8.

Case 1: (𝜎𝑤 , 𝜎𝑑) = (Sigmoid, Sigmoid). To achieve an upper

bound of − log DCG@𝐾 from Equation (3.4) to Equation (3.5), 𝜎𝑑 (·)
must serve as an upper bound of the Heaviside step function 𝛿 (·),
ensuring that the surrogate loss (3.5) correctly bounds the target ob-

jective. While the sigmoid function provides a close approximation

to 𝛿 (·), it does not satisfy the requirement of being an upper bound.

As a result, selecting the sigmoid function for 𝜎𝑑 (·) would fail to

establish the upper bound of − log DCG@𝐾 , thereby undermining

the theoretical guarantees.

Case 2: (𝜎𝑤 , 𝜎𝑑) = (Sigmoid, Exponential). This configura-

tion corresponds to our proposed SL@𝐾 loss. In this case, SL@𝐾

achieves a tight upper bound for − log DCG@𝐾 , as proven in The-

orem 3.2 and Appendix B.2. This tightness arises from the expo-

nential function’s ability to serve as an effective upper bound for

𝛿 (·), while the sigmoid function provides a close approximation

that ensures stability and smoothness in optimization (cf. Case 4).

Case 3: (𝜎𝑤 , 𝜎𝑑) = (Exponential, Sigmoid). Similar to Case 1,

the sigmoid function as 𝜎𝑑 (·) does not serve as an upper bound of

𝛿 (·), hindering the theoretical guarantees of SL@𝐾 .

Case 4: (𝜎𝑤 , 𝜎𝑑) = (Exponential, Exponential). In this case,

SL@𝐾 indeed serves as an upper bound of − log DCG@𝐾 , but the

exponential function does not approximate the Heaviside step func-

tion 𝛿 (·) tightly, resulting in a loose upper bound. Specifically, the

difference between the sigmoid function 1/(1 + exp(−𝑥/𝜏𝑤)) and
𝛿 (𝑥) is 1/(1 + exp(|𝑥 |/𝜏𝑤)) ≈ exp(−|𝑥 |/𝜏𝑤) when 𝜏𝑤 is small. In

contrast, the difference between the exponential function exp(𝑥/𝜏𝑑)
and 𝛿 (𝑥) is exp(𝑥/𝜏𝑑) − 1 ≈ 𝑥/𝜏𝑑 when 𝑥 > 0 and 𝜏𝑑 is large. This

shows that the sigmoid function provides a better approximation

of 𝛿 (·). Moreover, although the sigmoid function is not an upper

bound of 𝛿 (·), it can still be used in 𝜎𝑤 (·) with a tight upper bound

guarantee, as proven in Theorem 3.2.

B.2 Proof of Theorem 3.2
Theorem 3.2 (NDCG@𝐾 surrogate). For any user 𝑢, if the Top-𝐾
hits 𝐻𝐾𝑢 > 1

5, SL@𝐾 serves as an upper bound of − log DCG@𝐾 ,
i.e.,

− log DCG@𝐾 (𝑢) ≤ LSL@𝐾 (𝑢) . (3.7)

When the Top-𝐾 hits 𝐻𝐾𝑢 = 1, a marginally looser yet effective bound
holds, i.e., − 1

2
log DCG@𝐾 (𝑢) ≤ LSL@𝐾 (𝑢).

Proof of Theorem 3.2. Recall that we have derived inequality

(3.3d) in Section 3.1, i.e.,

− log DCG@𝐾 (𝑢) ≤
∑︁
𝑖∈P𝑢

I(𝑠𝑢𝑖 ≥ 𝛽𝐾𝑢)
𝐻𝐾𝑢

log𝜋𝑢𝑖 − log𝐻𝐾𝑢 . (B.1)

By the assumption of𝐻𝐾𝑢 ≥ 1, the last term− log𝐻𝐾𝑢 can be relaxed,

resulting in

− log DCG@𝐾 (𝑢) ≤
∑︁
𝑖∈P𝑢

I(𝑠𝑢𝑖 ≥ 𝛽𝐾𝑢)
𝐻𝐾𝑢

log𝜋𝑢𝑖 . (B.2)

Recall again that

𝜋𝑢𝑖 =
∑︁
𝑗∈I

I(𝑠𝑢 𝑗 ≥ 𝑠𝑢𝑖) =
∑︁
𝑗∈I

𝛿 (𝑑𝑢𝑖 𝑗) ≤
∑︁
𝑗∈I

𝜎𝑑 (𝑑𝑢𝑖 𝑗), (B.3)

where 𝑑𝑢𝑖 𝑗 = 𝑠𝑢 𝑗 − 𝑠𝑢𝑖 , 𝛿 (𝑥) = I(𝑥 ≥ 0) is the Heaviside step func-

tion, and 𝜎𝑑 (𝑥) = exp(𝑥/𝜏𝑑) is the exponential function serving as

a smooth upper bound of 𝛿 (𝑥) for any 𝑥 and temperature 𝜏𝑑 > 0.

Therefore, Equation (B.2) can be further relaxed as

− log DCG@𝐾 (𝑢) ≤
∑︁
𝑖∈P𝑢

1

𝐻𝐾𝑢
𝛿 (𝑠𝑢𝑖 − 𝛽𝐾𝑢) log

©­«
∑︁
𝑗∈I

𝜎𝑑 (𝑑𝑢𝑖 𝑗)
ª®¬ .
(B.4)

In the following, we discuss two cases of 𝐻𝐾𝑢 to complete the proof.

Case 1. In the case of 𝐻𝐾𝑢 > 1, we have

1

𝐻𝐾𝑢
𝛿 (𝑠𝑢𝑖 − 𝛽𝐾𝑢) ≤

1

2

𝛿 (𝑠𝑢𝑖 − 𝛽𝐾𝑢) ≤ 𝜎𝑤 (𝑠𝑢𝑖 − 𝛽𝐾𝑢), (B.5)

where 𝜎𝑤 (𝑥) = 1/(1 + exp(−𝑥/𝜏𝑤)) is the sigmoid function with

temperature 𝜏𝑤 > 0. The last inequality in Equation (B.5) holds

5
The assumption 𝐻𝐾𝑢 > 1 is commonly satisfied in practice, as the training process

tends to increase the scores of positive items, making them typically larger than those

of negative items. Appendix B.2 provides further empirical validation.

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Weiqin Yang et al.

due to 𝜎𝑤 (𝑠𝑢𝑖 − 𝛽𝐾𝑢) ≥ 1

2
if 𝑠𝑢𝑖 > 𝛽𝐾𝑢 . Therefore, by Equations (B.4)

and (B.5), we have

− log DCG@𝐾 (𝑢) ≤
∑︁
𝑖∈P𝑢

𝜎𝑤 (𝑠𝑢𝑖 − 𝛽𝐾𝑢) log
©­«
∑︁
𝑗∈I

𝜎𝑑 (𝑑𝑢𝑖 𝑗)
ª®¬ . (B.6)

which exactly corresponds to the SL@𝐾 loss LSL@𝐾 (𝑢) in Equa-

tion (3.5). Therefore, SL@𝐾 serves as an upper bound of− log DCG@𝐾

when 𝐻𝐾𝑢 > 1.

Case 2. In the case of 𝐻𝐾𝑢 = 1, there only exists one positive item

𝑖∗ ∈ P𝑢 with 𝑠𝑢𝑖∗ ≥ 𝛽𝐾𝑢 . In this case, Equation (B.1) can be reduced

to

− log DCG@𝐾 (𝑢) ≤ log𝜋𝑢𝑖∗ ≤ log
©­«
∑︁
𝑗∈I

𝜎𝑑 (𝑑𝑢𝑖∗ 𝑗)
ª®¬ . (B.7)

Since 𝑠𝑢𝑖∗ ≥ 𝛽𝐾𝑢 , we have 𝜎𝑤 (𝑠𝑢𝑖∗ − 𝛽𝐾𝑢) ≥ 1

2
, which leads to

−1

2

log DCG@𝐾 (𝑢) ≤ 𝜎𝑤 (𝑠𝑢𝑖∗−𝛽𝐾𝑢) log
©­«
∑︁
𝑗∈I

𝜎𝑑 (𝑑𝑢𝑖∗ 𝑗)
ª®¬ ≤ LSL@𝐾 (𝑢) .

(B.8)

Therefore, SL@𝐾 serves an upper bound of − 1

2
log DCG@𝐾 when

𝐻𝐾𝑢 = 1. This completes the proof. □

Discussion. The condition in Theorem 3.2 is easy to satisfy in prac-

tice. For example, SL@20 achieves 𝐻20

𝑢 > 1 for 53.32%, 81.92%, and

95.66% of users within 5, 10, and 20 epochs training on Electronic

dataset and MF backbone, respectively.

B.3 Gradient Analysis and Noise Robustness
SL@𝐾 inherently possesses the denoising ability to resist the false

positive noise (e.g., misclicks), which is common in RS [79]. To

theoretically analyze the noise robustness of SL@𝐾 , we conduct a

gradient analysis as follows:

∇uLSL@𝐾 =
∑︁
𝑖∈P𝑢

𝑤𝑢𝑖∇uLSL (𝑢, 𝑖)+
1

𝜏𝑤
𝑤𝑢𝑖 (1−𝑤𝑢𝑖)LSL (𝑢, 𝑖)∇u𝑠𝑢𝑖 .

(B.9)

Therefore, we can derive an upper bound of

∇uLSL@𝐾

as

∇uLSL@𝐾

 ≤ ∑︁
𝑖∈P𝑢

𝑤𝑢𝑖

(
∥∇uLSL (𝑢, 𝑖)∥ +

1

𝜏𝑤
LSL (𝑢, 𝑖) ∥∇u𝑠𝑢𝑖 ∥

)
.

(B.10)

It’s evident that the above gradient upper bound of SL@𝐾 w.r.t. the

user embedding u is controlled by the weight 𝑤𝑢𝑖 . For any false

positive item 𝑖 with low preference score 𝑠𝑢𝑖 ,𝑤𝑢𝑖 will be sufficiently

small, which reduces its impact on the gradient. This analysis indi-

cates that SL@𝐾 is robust to false positive noise.

C Sample Quantile Estimation
In Section 3.1.3, we propose a sample yet efficient Monte Carlo

sampling strategy to estimate the Top-𝐾 quantile 𝛽𝐾𝑢 for SL@𝐾 . In

this section, we provide additional details on the sample quantile

estimation technique.

In Appendix C.1, we provide the proof of the estimation error
bound of the sample quantile technique, i.e., Theorem 3.1 in Sec-

tion 3.1.3. In Appendix C.2, we detail our proposed negative sam-
pling trick in Section 3.1.3 to enhance the Top-𝐾 quantile estimation

efficiency. In Appendix C.3, we briefly introduce the quantile regres-
sion technique, which can be used as an alternative to the sample

quantile estimation (though no performance gain is observed in

our experiments). In Appendix C.4, we discuss the sample ranking
estimation technique, which can be used to estimate the ranking

position (though less effective in practice). Finally, in Appendix C.5,

we provide the detailed optimization algorithm for SL@𝐾 .

C.1 Proof of Theorem 3.1
Theorem 3.1 (Monte Carlo quantile estimation). Given the cu-
mulative distribution function (c.d.f.) 𝐹𝑢 (𝑠) of the preference scores
𝑠𝑢𝑖 for user 𝑢, for any 𝑝 ∈ (0, 1), the 𝑝-th quantile is defined as
𝜃
𝑝
𝑢 := 𝐹−1

𝑢 (𝑝) = inf{𝑠 : 𝐹𝑢 (𝑠) ≥ 𝑝}. In Monte Carlo quantile estima-

tion, we randomly sample 𝑁 preference scores {𝑠𝑢 𝑗 }𝑁𝑗=1

i.i.d.∼ 𝐹𝑢 (𝑠).
The estimated 𝑝-th quantile is defined as ˆ𝜃

𝑝
𝑢 := 𝐹−1

𝑢 (𝑝), where 𝐹𝑢 (𝑠) =
1

𝑁

∑𝑁
𝑗=1

I(𝑠𝑢 𝑗 ≤ 𝑠) is the empirical c.d.f. of the sampled scores. Then,
for any 𝜀 > 0, we have

Pr

(��� ˆ𝜃𝑝𝑢 − 𝜃𝑝𝑢 ��� > 𝜀) ≤ 4𝑒−2𝑁𝛿2

𝜀 , (3.6)

where 𝛿𝜀 = min{𝐹𝑢 (𝜃𝑝𝑢 + 𝜀) − 𝑝, 𝑝 − 𝐹𝑢 (𝜃
𝑝
𝑢 − 𝜀)}. Specifically, in the

discrete RS scenarios, the Top-𝐾 quantile 𝛽𝐾𝑢 is exactly 𝜃1−𝐾/|I |
𝑢 .

To proof Theorem 3.1, we first introduce the following lemma.

Lemma C.1 (Dvoretzky-Kiefer-Wolfowitz (DKW) inequality [2,

49]). For any c.d.f. 𝐹 (𝑠) and the corresponding empirical c.d.f. 𝐹 (𝑠)
with sample size 𝑁 , given the sup-norm distance between 𝐹 and 𝐹
defined as ∥𝐹 − 𝐹 ∥∞ = sup𝑠∈R{|𝐹 (𝑠) − 𝐹 (𝑠) |}, we have

Pr

(
∥𝐹 − 𝐹 ∥∞ > 𝜀

)
≤ 2𝑒−2𝑁𝜀2

. (C.1)

The estimation error bound of the sample quantile technique

(cf. Theorem 3.1) can be simply derived from the DKW inequality

(cf. Lemma C.1) as follows.

Proof of Theorem 3.1. Consider the error between
ˆ𝜃
𝑝
𝑢 and 𝜃

𝑝
𝑢

, we have

Pr(ˆ𝜃𝑝𝑢 > 𝜃
𝑝
𝑢 + 𝜀) = Pr(𝑝 > 𝐹𝑢 (𝜃𝑝𝑢 + 𝜀))

= Pr(𝐹𝑢 (𝜃𝑝𝑢 + 𝜀) − 𝐹𝑢 (𝜃
𝑝
𝑢 + 𝜀) > 𝐹𝑢 (𝜃𝑝𝑢 + 𝜀) − 𝑝)

≤ Pr(∥𝐹𝑢 − 𝐹𝑢 ∥∞ > 𝛿+𝜀),
(C.2)

where 𝛿+𝜀 = 𝐹𝑢 (𝜃𝑝𝑢 + 𝜀) − 𝑝 . Analogously, let 𝛿−𝜀 = 𝑝 − 𝐹𝑢 (𝜃𝑝𝑢 − 𝜀) ,
we have

Pr(ˆ𝜃𝑝𝑢 < 𝜃
𝑝
𝑢 − 𝜀) ≤ Pr(∥𝐹𝑢 − 𝐹𝑢 ∥∞ > 𝛿−𝜀). (C.3)

Therefore, we have the two side error bound (cf. Equation (3.6)) by

setting 𝛿𝜀 = min{𝛿+𝜀 , 𝛿−𝜀 }, which completes the proof. □

C.2 Negative Sampling Trick
Negative sampling trick. In Section 3.1.3, we introduce a negative
sampling trick to estimate the Top-𝐾 quantile 𝛽𝐾𝑢 in RS. Specifically,

our sampled items will include all positive items P𝑢 and 𝑁 (≪ 𝐼)

i.i.d. sampled negative items
ˆN𝑢 = { 𝑗𝑘 : 𝑗𝑘

i.i.d.∼ Uniform(N𝑢)}𝑁𝑘=1

from the negative item set N𝑢 uniformly. Since the Top-𝐾 quantile

is usually located within the range of positive scores, this trick can

estimate the quantile more effectively than directly i.i.d. sampling

Breaking the Top-𝐾 Barrier: Advancing Top-𝐾 Ranking Metrics Optimization in Recommender Systems KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

0 2000 4000 6000 8000 10000 12000 14000
Users

0.2

0.3

0.4

0.5

0.6

0.7

Q
ua

nt
ile

s

mean 20
u

mean 20
u

20
u

20
u

(a) With negative sampling trick.

0 2000 4000 6000 8000 10000 12000 14000
Users

0.2

0.3

0.4

0.5

0.6

Q
ua

nt
ile

s

mean 20
u

mean 20
u

20
u

20
u

(b) Without negative sampling trick.

Figure 5: Comparison of sample quantile estimation with and without the negative sampling trick.

(a) Estimated Top-𝐾 quantile ˆ𝛽𝐾𝑢 . (b) Ideal Top-𝐾 quantile 𝛽𝐾𝑢 .

Figure 6: Comparison of the estimated Top-𝐾 quantile ˆ𝛽𝐾𝑢 with the ideal Top-𝐾 quantile 𝛽𝐾𝑢 .

from all items (cf. Figure 5 for empirical comparison, all experiments

are conducted under the same settings as Figure 2).

Discussions on bias. However, applying the negative sampling

trick leads to a theoretical gap. Since the sampled items
ˆI𝑢 =

P𝑢 ∪ ˆN𝑢 are not i.i.d. sampled from the whole item set I, we should
not directly take the (𝐾/𝐼)-th quantile of

ˆI𝑢 as the estimated quan-

tile
ˆ𝛽𝐾𝑢 , which may introduce bias. Instead, under a reasonable

assumption that all Top-min(𝐾, 𝑃𝑢) items are positive items, we

can set the estimated quantile
ˆ𝛽𝐾𝑢 as:

• If 𝐾 ≤ 𝑃𝑢 , ˆ𝛽𝐾𝑢 should be set as the Top-𝐾 score of {𝑠𝑢𝑖 }, where
𝑖 ∈ P𝑢 .
• If 𝐾 > 𝑃𝑢 , ˆ𝛽𝐾𝑢 should be set as the ((𝐾 − 𝑃𝑢)/𝐼)-th quantile of

{𝑠𝑢 𝑗 }, where 𝑗 ∈ ˆN𝑢 .
The sampling strategy above can be seen as unbiased. Neverthe-

less, this sampling setting is still not practical in RS. In the case of

𝐾 > 𝑃𝑢 , the quantile ratio (𝐾 −𝑃𝑢)/𝐼 can be too small and even less

than 1/𝑁 (e.g., 𝐾 = 20, 𝐼 = 10
5, 𝑁 = 10

3
). Therefore, the estimated

quantile
ˆ𝛽𝐾𝑢 could be theoretically higher than all the negative item

scores and can not be estimated by sampling negative items
ˆN𝑢 .

Given the impracticality of the above unbiased sampling setting,

we slightly modify the above sampling to derive our proposed

negative sampling trick. Specifically, we set
ˆ𝛽𝐾𝑢 as the Top-𝐾 score

of {𝑠𝑢𝑘 }, where 𝑘 ∈ P𝑢 ∪ ˆN𝑢 . This sampling trick perfectly fits

the above unbiased case when 𝐾 ≤ 𝑃𝑢 . In the case of 𝐾 > 𝑃𝑢 , this

setting actually estimates the (𝐾 − 𝑃𝑢)/𝑁 -th quantile of negative

item scores, introducing a slight bias but also making the training

more stable. Moreover, it’s clear that the estimated quantile
ˆ𝛽𝐾𝑢

will always be lower than the ideal Top-𝐾 quantile 𝛽𝐾𝑢 under this

sampling trick (cf. Figure 5), which leads to a more conservative

yet moderate truncation in training SL@𝐾 , as shown in Figure 6.

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Weiqin Yang et al.

Algorithm C.1 SL@𝐾 Optimization.

Input: user and item setsU,I; dataset D = {𝑦𝑢𝑖 ∈ {0, 1} : 𝑢 ∈ U, 𝑖 ∈ I}; score function 𝑠𝑢𝑖 : U × I → R with parameters Θ; negative
sampling number 𝑁 ; the number of epochs 𝑇 ; the number of 𝐾 ; temperature parameters 𝜏𝑤 , 𝜏𝑑 ; quantile update interval 𝑇𝛽 .

1: Initialize the estimated Top-𝐾 quantiles
ˆ𝛽𝐾𝑢 ← 0 for all 𝑢 ∈ U.

2: for 𝑡 = 1, 2, . . . ,𝑇 do
3: for 𝑢 ∈ U do
4: Let P𝑢 = {𝑖 : 𝑦𝑢𝑖 = 1} be the positive items of user 𝑢.

5: Let N𝑢 = {𝑖 : 𝑦𝑢𝑖 = 0} be the negative items of user 𝑢.

⊲ Estimate the Top-𝐾 quantiles
ˆ𝛽𝐾𝑢 by sample quantile estimation

⊲ Complexity: 𝑂 ((|P𝑢 | + 𝑁) log(|P𝑢 | + 𝑁)) ≈ 𝑂 (𝑁 log𝑁)
6: if 𝑡 ≡ 0 mod 𝑇𝛽 then

7: Sample 𝑁 negative items
ˆN𝑢 = { 𝑗𝑘 : 𝑗𝑘

i.i.d.∼ Uniform(N𝑢)}𝑁𝑘=1
, let

ˆI𝑢 = P𝑢 ∪ ˆN𝑢 .
8: Sort items 𝑖 ∈ ˆI𝑢 by scores {𝑠𝑢𝑖 }.
9: Estimate the Top-𝐾 quantile

ˆ𝛽𝐾𝑢 ← ˆI𝑢 [𝐾], where ˆI𝑢 [𝐾] denotes the 𝐾-th top-ranked item in
ˆI𝑢 .

10: end if
⊲ Optimize Θ by minimizing the SL@𝐾 loss

⊲ Complexity: 𝑂 (|P𝑢 |𝑁)
11: Sample 𝑁 negative items

ˆN𝑢 = { 𝑗𝑘 : 𝑗𝑘
i.i.d.∼ Uniform(N𝑢)}𝑁𝑘=1

.

12: for 𝑖 ∈ P𝑢 do
13: Compute the quantile-based weight𝑤𝑢𝑖 = 𝜎𝑤 (𝑠𝑢𝑖 − ˆ𝛽𝐾𝑢), where 𝜎𝑤 = 𝜎 (·/𝜏𝑤), and 𝜎 (·) is the sigmoid function.

14: Compute the (sampled) SL loss LSL (𝑢, 𝑖) = log

∑
𝑗∈ ˆN𝑢 𝜎𝑑 (𝑑𝑢𝑖 𝑗), where 𝜎𝑑 = exp(·/𝜏𝑑).

15: end for
16: Compute the loss LSL@𝐾 (𝑢) =

∑
𝑖∈P𝑢 𝑤𝑢𝑖 · LSL (𝑢, 𝑖).

17: Update the parameters Θ by minimizing LSL@𝐾 (𝑢).
18: end for
19: end for

Output: the optimized parameters Θ.

C.3 Quantile Regression
Quantile regression. Quantile regression technique [21, 40] can

also be utilized for sample quantile estimation. Specifically, to esti-

mate the 𝑝-th quantile (see definition in Theorem 3.1), the quantile
regression loss LQR can be defined as

LQR (𝑢) = E𝑖∼Uniform(I)
[
𝑝 (𝑠𝑢𝑖 − ˆ𝛽𝑢)+ + (1 − 𝑝) (ˆ𝛽𝑢 − 𝑠𝑢𝑖)+

]
,

(C.4)

where (·)+ = max(·, 0), ˆ𝛽𝑢 is the estimated 𝑝-th quantile, and

Uniform(I) denotes the uniform distribution over the item set

I. Note that for any 𝑥 ∈ R, 𝑥 · 𝛿 (𝑥) = 𝑥+, and 𝑥+ − (−𝑥)+ = 𝑥 , we
can rewrite the quantile regression loss in Equation (C.4) as

LQR (𝑢) = E𝑖∼Uniform(I)
[
(ˆ𝛽𝑢 − 𝑠𝑢𝑖) (𝛿 (ˆ𝛽𝑢 − 𝑠𝑢𝑖) − 𝑝)

]
. (C.5)

Suppose that 𝑆 is a random variable representing the preference

scores 𝑠𝑢𝑖 (w.r.t. user 𝑢), and 𝐹𝑆 is the c.d.f. of 𝑆 on R. Since item 𝑖

is uniformly distributed, the quantile regression loss (C.4) can be

rewritten as the following expectation:

LQR (𝑢) = E𝑆∼𝐹𝑆
[
𝑝 (𝑆 − ˆ𝛽𝑢)+ + (1 − 𝑝) (ˆ𝛽𝑢 − 𝑆)+

]
=

∫ ˆ𝛽𝑢

−∞
(1 − 𝑝) (ˆ𝛽𝑢 − 𝑆)d𝐹𝑆 (𝑆) +

∫ ∞

ˆ𝛽𝑢

𝑝 (𝑆 − ˆ𝛽𝑢)d𝐹𝑆 (𝑆) .

(C.6)

Let 𝛽𝑢 = arg min
ˆ𝛽𝑢
LQR (𝑢), we have

(1 − 𝑝)
∫ 𝛽𝑢

−∞
d𝐹𝑆 (𝑆) = 𝑝

∫ ∞

𝛽𝑢

d𝐹𝑆 (𝑆) . (C.7)

This results in

∫ 𝛽𝑢
−∞ d𝐹𝑆 (𝑆) = 𝑝 , i.e., the optimal

ˆ𝛽𝑢 is precisely the

𝑝-th quantile of scores 𝑆 .

Discussion. Quantile regression is indeed theoretically unbiased.

However, we did not observe any performance gains in our experi-

ments when applying it to SL@𝐾 . This may be because the quantile

regression loss is relatively difficult to optimize due to sparse sig-

nals and large variance. In Equation (C.4), as 𝑝 = 1 − 𝐾/|I| ≈ 1 in

Top-𝐾 recommendation scenarios, the samples scored above the

quantile
ˆ𝛽𝑢 (high-ranked items) are assigned a weight of 𝑝 , which is

close to 1, while the samples scored below the quantile are assigned

a nearly vanishing weight of 1 − 𝑝 . Given the sparse nature of the

high-ranked items, the Monte Carlo estimation of the quantile re-

gression loss is highly unstable – once the high-ranked items are

sampled, the loss will be dominated by these items, leading to large

variance and unstable gradients w.r.t.
ˆ𝛽𝑢 . Although importance

sampling [78] may reduce the variance, it is difficult to accurately

estimate the sampling distribution over the entire item set during

sampling-based training. In contrast, our proposed strategy is both

practical and effective for sample quantile estimation.

C.4 Sample Ranking Estimation
Similar to sample quantile estimation, sample ranking estimation

[80] can also be applied to estimate the ranking position 𝜋𝑢𝑖 . Specifi-

cally, we can uniformly sample 𝑁 negative items
ˆN𝑢 = { 𝑗𝑘 : 𝑗𝑘

i.i.d.∼
Uniform(N𝑢)}𝑁𝑘=1

, then sort the sampled items 𝑖 ∈ ˆI𝑢 = P𝑢 ∪ ˆN𝑢

Breaking the Top-𝐾 Barrier: Advancing Top-𝐾 Ranking Metrics Optimization in Recommender Systems KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

Table 9: Statistics of the datasets.

Dataset #Users #Items #Interactions Density

Health [23] 1,974 1,200 48,189 0.02034

Electronic [23] 13,455 8,360 234,521 0.00208

Gowalla [14] 29,858 40,988 1,027,464 0.00084

Book [23] 135,109 115,172 4,042,382 0.00026

MovieLens [22] 939 1,016 80,393 0.08427

Food [48] 5,875 9,852 233,038 0.00403

Table 10: Hyperparameters to be searched for each method.

Method Hyperparameters

BPR lr, wd

GuidedRec lr, wd

SONG lr, wd, 𝛾𝑔
SONG@𝐾 lr, wd, 𝛾𝑔 , 𝜂𝜆
LLPAUC lr, wd, 𝛼 , 𝛽

SL lr, wd, 𝜏

AdvInfoNCE lr, wd, 𝜏

BSL lr, wd, 𝜏1, 𝜏2

PSL lr, wd, 𝜏

LambdaRank lr, wd

LambdaLoss lr, wd

LambdaLoss@𝐾 lr, wd

SL@𝐾 lr, wd, 𝜏𝑑 , 𝜏𝑤 , 𝑇𝛽

by their scores {𝑠𝑢𝑖 }. Then, for any item 𝑖 , given the sample ranking

position 𝜋∗
𝑢𝑖

in the sampled items
ˆI𝑢 , the estimated ranking position

𝜋𝑢𝑖 in the entire item set can be rescaled as

𝜋𝑢𝑖 = 𝜋
∗
𝑢𝑖 ·
|I |
| ˆI𝑢 |

. (C.8)

Compared to sample quantile estimation, sample ranking estimation

may result in greater errors, primarily because the estimated rank-

ing 𝜋𝑢𝑖 obtained from sample ranking estimation is always discrete

and predefined, i.e., 1, 1 + |I|/| ˆI𝑢 |, 1 + 2|I |/| ˆI𝑢 |, · · · . It is evident
that sample ranking estimation will result in an expected error of at

least
1

2
|I |/| ˆI𝑢 | ≈ 1

2
|I |/𝑁 , which decreases proportionally to 1/𝑁

when 𝑁 is large. However, the error in sample quantile estimation

decreases exponentially w.r.t. 𝑁 , which leads to better estimation

accuracy (cf. Theorem 3.1). Therefore, sample ranking estimation is

not suitable for recommendation losses that are highly sensitive to

ranking positions, such as LambdaLoss [77] and LambdaLoss@𝐾

[31], as discussed in Appendix A.

C.5 SL@𝐾 Optimization
The detailed optimization algorithm of SL@𝐾 (3.5) is presented in

Algorithm C.1, which is based on the sample quantile estimation

technique discussed in Appendix C.2. In practical SL@𝐾 optimiza-

tion, to address training difficulties arising from frequent quantile

changes due to score variations (especially in the early stages), we

introduce a quantile update interval hyperparameter𝑇𝛽 , i.e., where

quantiles are updated every 𝑇𝛽 epochs.

D Experimental Details
In this section, we provide additional details on the experiments,

including the dataset descriptions in Appendix D.1, the recommen-

dation scenarios in Appendix D.2, the recommendation backbones

in Appendix D.3, the baseline methods and the corresponding hy-

perparameter settings in Appendix D.4. We also provide the optimal

hyperparameters for all methods in Appendix D.5 for reproducibil-

ity. Finally, we describe the additional information retrieval (IR)

tasks in Appendix D.6.

Hardware and software. All experiments are conducted on 1x

NVIDIA GeForce RTX 4090 GPU. The code is implemented in

PyTorch [55]. Both the datasets and code are available at https:

//github.com/Tiny-Snow/IR-Benchmark.

D.1 Datasets
In our recommendation experiments, we use six benchmark datasets,

as summarized in Table 9:

• Health / Electronic / Book [23, 50]: These datasets are col-
lected from the Amazon dataset, a large-scale collection of prod-

uct reviews from Amazon
6
. The 2014 version of the Amazon

dataset contains 142.8 million reviews spanning May 1996 to

July 2014.

• Gowalla [14]: The Gowalla dataset is a check-in dataset from

the location-based social network Gowalla
7
, including 1 million

users, 1 million locations, and 6 million check-ins.

• MovieLens [22]:TheMovieLens dataset is amovie rating dataset

from MovieLens
8
. We use the MovieLens-100K version, which

contains 100,000 ratings from 1,000 users and 1,700 movies.

• Food [48]: The Food dataset consists of 180,000 recipes and

700,000 recipe reviews spanning 18 years of user interactions

and uploads on Food.com
9
.

Dataset preprocessing. Following the standard practice in Yang

et al. [84], we use a 10-core setting [24, 76], i.e., all users and items

have at least 10 interactions. To remove low-quality interactions,

we retain only those with ratings (if available) greater than or equal

to 3. After preprocessing, we randomly split the datasets into 80%

training and 20% test sets, and further split 10% of the training set

as a validation set for hyperparameter tuning.

D.2 Recommendation Scenarios
In this paper, we evaluate the performance of eachmethod primarily

in the following two Top-𝐾 recommendation scenarios:

• IID scenario [26, 84]: The IID scenario is the most common

recommendation scenario, where the training and test sets are

split in an independent and identically distributed (i.i.d.) manner

from the entire dataset, ensuring the same distributions. This

follows the setup described in He et al. [26] and Yang et al. [84].

• False Positive Noise scenario [81, 84]: The False Positive

Noise scenario is commonly used to assess a method’s ability

to handle noisy data. Our false positive noise setting is adapted

fromWu et al. [81] and Yang et al. [84]. Specifically, given a noise

ratio 𝑟 , we randomly sample ⌈𝑟×𝑃𝑢⌉ negative items for each user

𝑢, and flip them to positive items to simulate false positive noise.

The noise ratio 𝑟 represents the percentage of false positive noise

and takes values from the set {5%, 10%, 15%, 20%}.
6
https://www.amazon.com/

7
https://en.wikipedia.org/wiki/Gowalla

8
https://movielens.org/

9
https://www.food.com/

https://github.com/Tiny-Snow/IR-Benchmark
https://github.com/Tiny-Snow/IR-Benchmark
https://www.amazon.com/
https://en.wikipedia.org/wiki/Gowalla
https://movielens.org/
https://www.food.com/

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Weiqin Yang et al.

D.3 Recommendation Backbones
Recommendation backbones (a.k.a. recommendation models) are

the core components of RS. In the scope of this paper, the recom-

mendation backbones can be formally defined as the preference

score function 𝑠𝑢𝑖 : U × I → R with parameters Θ. It is crucial
to evaluate the effectiveness of the recommendation loss on dif-

ferent backbones to ensure their generalization and consistency.

In our experiments, we implement three popular recommendation

backbones with different architectures and properties:

• MF [41]: MF is a fundamental yet effective recommendation

model that factorizes the user-item interaction matrix into the

user and item embeddings. Many embedding-based recommen-

dation models leverage MF as the initial layer. Specifically, we

set the embedding size 𝑑 = 64 for all settings, following Wang

et al. [76] and Yang et al. [84].

• LightGCN [26]: LightGCN is an effective GNN-based recom-

mendation model. LightGCN performs graph convolution on the

user-item interaction graph to aggregate high-order interactions.

Specifically, LightGCN simplifies NGCF [76] and retains only

the non-parameterized graph convolution. In our experiments,

we set the number of layers to 2, which aligns with the original

settings in He et al. [26] and Yang et al. [84].

• XSimGCL [86]: XSimGCL is a novel recommendation model

based on contrastive learning [32, 46]. Based on a 3-layer Light-

GCN, XSimGCL adds random noise to the output embeddings of

each layer, and introduces contrastive learning between the final

layer and the 𝑙∗-th layer, i.e., adding an auxiliary InfoNCE [53]

loss between these two layers. Following the original settings

in Yu et al. [86] and Yang et al. [84], the magnitude of random

noise added to each layer is set to 0.1, the contrastive layer 𝑙∗ is
set to 1 (with the embedding layer considered as the 0-th layer),

the temperature of InfoNCE is set to 0.1, and the weight of the

auxiliary InfoNCE loss is chosen from the set {0.05, 0.1, 0.2}.

D.4 Recommendation Losses
To adequately evaluate the effectiveness of SL@𝐾 , we reproduce

the following SOTA recommendation losses and search for the

optimal hyperparameters using grid search. In loss optimization,

we use the Adam optimizer [37] with hyperparameters including

learning rate (lr) and weight decay (wd). The batch size is set to

1024, and the number of epochs is set to 200, during which all

methods are observed to converge. If negative sampling is required,

the number of negative samples is set to 𝑁 = 1000, except for the

MovieLens dataset, where it is reduced to 200 due to its smaller

item set size. The above settings are consistent with the settings

in Yang et al. [84]. The details of the compared methods and their

hyperparameter search spaces are as follows:

BPR [62]. BPR is a conventional pairwise loss based on Bayesian

Maximum Likelihood Estimation (MLE) [9]. The objective of BPR

is to learn a partial order among items, i.e., positive items should

be ranked higher than negative items. Furthermore, BPR is a surro-

gate loss for AUC metric [62, 68]. The score function 𝑠𝑢𝑖 in BPR is

defined as the dot product between user and item embeddings. The

hyperparameter search space for BPR is as follows:

• lr ∈ {10
−1, 10

−2, 10
−3, 10

−4}.
• wd ∈ {0, 10

−4, 10
−5, 10

−6}.

GuidedRec [60]. GuidedRec is a Binary Cross-Entropy (BCE) [28]
loss with additional model-based DCG surrogate learning guidance.

Rather than being a direct DCG surrogate loss, GuidedRec learns a

surrogate lossmodel to estimate DCG. During training, it maximizes

the estimated DCGwhile minimizing theMean Squared Error (MSE)

[25] between the estimated DCG and the true DCG. The score

function 𝑠𝑢𝑖 in GuidedRec is defined as the cosine similarity between

user and item embeddings. The hyperparameter search space for

GuidedRec is as follows:

• lr ∈ {10
−1, 10

−2, 10
−3}.

• wd ∈ {0, 10
−4, 10

−5, 10
−6}.

LambdaRank [5]. LambdaRank is a weighted BPR loss [62],

where the weights are designed heuristically. Though LambdaRank

aims to optimize DCG, it is not strictly a DCG surrogate loss, thus

lacking theoretical guarantees. The score function 𝑠𝑢𝑖 in Lamb-

daRank is defined as the dot product between user and item em-

beddings. The hyperparameter search space for LambdaRank is as

follows:

• lr ∈ {10
−1, 10

−2, 10
−3, 10

−4}.
• wd ∈ {0, 10

−4, 10
−5, 10

−6}.
LambdaLoss [77]. LambdaLoss is a DCG surrogate loss that is

formally a weighted BPR loss, similar to LambdaRank [5]. Wang

et al. [77] demonstrated that LambdaRank does not directly opti-

mize DCG, and proposed LambdaLoss as a strict DCG surrogate

loss. The score function 𝑠𝑢𝑖 in LambdaLoss is defined as the dot

product between user and item embeddings. The hyperparameter

search space for LambdaLoss is as follows:

• lr ∈ {10
−1, 10

−2, 10
−3, 10

−4}.
• wd ∈ {0, 10

−4, 10
−5, 10

−6}.
LambdaLoss@𝐾 [31]. LambdaLoss@𝐾 is a DCG@𝐾 surrogate

loss that is formally a weighted BPR loss, similar to LambdaRank [5]

and LambdaLoss [77]. Based on the LambdaLoss framework, Jager-

man et al. [31] proposed LambdaLoss@𝐾 , which strictly serves as

a surrogate for DCG@𝐾 . The score function 𝑠𝑢𝑖 in LambdaLoss@𝐾

is defined as the dot product between user and item embeddings.

The hyperparameter search space for LambdaLoss@𝐾 is as follows:

• lr ∈ {10
−1, 10

−2, 10
−3, 10

−4}.
• wd ∈ {0, 10

−4, 10
−5, 10

−6}.
SONG [59]. SONG is an NDCG surrogate loss based on the bilevel

compositional optimization technique [74]. Specifically, SONG first

smooths NDCG by surrogating the ranking positions with continu-

ous functions, then calculates the bilevel compositional gradients

of NDCG to optimize the model. Qiu et al. [59] proved that SONG

is a lower bound of NDCG, justifying its effectiveness on NDCG

optimization. Moreover, Qiu et al. [59] also establishes the conver-

gence guarantee of SONG under certain assumptions. In practical

implementations, SONG utilizes a moving average estimator [37]

with update rate 𝛾𝑔 for ranking positions to stabilize the gradients.

The score function 𝑠𝑢𝑖 in SONG is defined as the cosine similarity

between user and item embeddings. The hyperparameter search

space for SONG is as follows:

• lr ∈ {10
−1, 10

−2, 10
−3}.

• wd ∈ {0, 10
−4, 10

−5, 10
−6}.

• 𝛾𝑔 ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.

Breaking the Top-𝐾 Barrier: Advancing Top-𝐾 Ranking Metrics Optimization in Recommender Systems KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

Table 11: Optimal hyperparameters on Health dataset.

Model Loss Hyperparameters

MF

BPR 0.001 0.0001

GuidedRec 0.01 0

SONG@20 0.1 0 0.9 0.001

LLPAUC 0.1 0 0.7 0.01

SL 0.1 0 0.2

AdvInfoNCE 0.1 0 0.2

BSL 0.1 0 0.2 0.2

PSL 0.1 0 0.1

SL@5 0.1 0 0.2 2.5 5

SL@10 0.1 0 0.2 2.5 20

SL@20 0.1 0 0.2 2.5 5

SL@50 0.1 0 0.2 2.25 5

SL@75 0.1 0 0.2 2.25 5

SL@100 0.1 0 0.2 2.5 5

LightGCN

BPR 0.001 0.000001

GuidedRec 0.01 0

SONG@20 0.1 0 0.9 0.001

LLPAUC 0.1 0 0.7 0.1

SL 0.1 0 0.2

AdvInfoNCE 0.1 0 0.2

BSL 0.1 0 0.05 0.2

PSL 0.1 0 0.1

SL@20 0.01 0 0.2 2.5 20

XSimGCL

BPR 0.1 0.000001

GuidedRec 0.001 0.000001

SONG@20 0.1 0 0.1 0.01

LLPAUC 0.1 0 0.1 0.1

SL 0.1 0 0.2

AdvInfoNCE 0.1 0 0.2

BSL 0.1 0 0.05 0.2

PSL 0.1 0 0.1

SL@20 0.01 0 0.2 1.5 20

Table 12: Optimal hyperparameters on Electronic dataset.

Model Loss Hyperparameters

MF

BPR 0.001 0.00001

GuidedRec 0.01 0

SONG@20 0.1 0 0.1 0.001

LLPAUC 0.1 0 0.5 0.01

SL 0.01 0 0.2

AdvInfoNCE 0.1 0 0.2

BSL 0.1 0 0.5 0.2

PSL 0.01 0 0.1

SL@5 0.01 0 0.2 2.25 5

SL@10 0.01 0 0.2 2.25 20

SL@20 0.01 0 0.2 2.25 20

SL@50 0.01 0 0.2 2.25 20

SL@75 0.01 0 0.2 2.25 20

SL@100 0.01 0 0.2 2.25 5

LightGCN

BPR 0.01 0.000001

GuidedRec 0.01 0

SONG@20 0.1 0 0.1 0.01

LLPAUC 0.1 0 0.5 0.01

SL 0.01 0 0.2

AdvInfoNCE 0.01 0 0.2

BSL 0.01 0 0.2 0.2

PSL 0.01 0 0.1

SL@20 0.01 0 0.2 2.25 5

XSimGCL

BPR 0.01 0

GuidedRec 0.01 0

SONG@20 0.1 0 0.1 0.001

LLPAUC 0.1 0 0.3 0.01

SL 0.01 0 0.2

AdvInfoNCE 0.1 0 0.2

BSL 0.1 0 0.1 0.2

PSL 0.1 0 0.1

SL@20 0.01 0 0.2 1.25 5

Since SONG exhibits similar performance to SONG@𝐾 [59] in

our experiments, we only report the results of SONG@𝐾 .

SONG@𝐾 [59]. SONG@𝐾 is a generalization of SONG [59] for

NDCG@𝐾 optimization. Similar to SONG, SONG@𝐾 also utilizes

the bilevel compositional optimization technique [74]. Specifically,

it first smooths NDCG@𝐾 by surrogating the ranking positions

with amoving average estimator [37] with update rate𝛾𝑔 . To further

smooth the Top-𝐾 truncation, SONG@𝐾 introduces a quantile-

based weight similar to SL@𝐾 . To estimate the Top-𝐾 quantile,

SONG@𝐾 employs a quantile regression loss [21, 40] with learning

rate 𝜂𝜆 (cf. Appendix C.3). The score function 𝑠𝑢𝑖 in SONG@𝐾 is

defined as the cosine similarity between user and item embeddings.

The hyperparameter search space for SONG@𝐾 is as follows:

• lr ∈ {10
−1, 10

−2, 10
−3}.

• wd ∈ {0, 10
−4, 10

−5, 10
−6}.

• 𝛾𝑔 ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.
• 𝜂𝜆 ∈ {10

−1, 10
−2, 10

−3, 10
−4}.

LLPAUC [67]. LLPAUC is a surrogate loss designed for the lower-

left part of AUC. It has been shown to serve as a surrogate loss for

Top-𝐾 metrics such as Recall@𝐾 and Precision@𝐾 [16, 67]. The

score function 𝑠𝑢𝑖 in LLPAUC is defined as the cosine similarity

between user and item embeddings. Following Shi et al. [67]’s

original settings, the hyperparameter search space for LLPAUC is

as follows:

• lr ∈ {10
−1, 10

−2, 10
−3}.

• wd ∈ {0, 10
−4, 10

−5, 10
−6}.

• 𝛼 ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.
• 𝛽 ∈ {0.01, 0.1}.
Softmax Loss (SL) [82]. SL is a SOTA recommendation loss de-

rived from the listwise Maximum Likelihood Estimation (MLE).

Beyond explaining the effectiveness of SL from the perspectives

of MLE or contrastive learning, it has been demonstrated that SL

serves as a DCG surrogate loss. Specifically, SL is an upper bound

of − log DCG [4, 84], ensuring that optimizing SL is consistent with

optimizing DCG. In practice, SL introduces a temperature hyperpa-

rameter 𝜏 to control the smoothness of the softmax operator. The

score function 𝑠𝑢𝑖 in SL is defined as the cosine similarity between

user and item embeddings. Following the settings in Wu et al. [82]

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Weiqin Yang et al.

Table 13: Optimal hyperparameters on Gowalla dataset.

Model Loss Hyperparameters

MF

BPR 0.001 0.000001

GuidedRec 0.001 0

SONG@20 0.1 0 0.1 0.001

LLPAUC 0.1 0 0.7 0.01

SL 0.1 0 0.1

AdvInfoNCE 0.1 0 0.1

BSL 0.1 0 0.2 0.1

PSL 0.1 0 0.05

SL@20 0.01 0 0.1 1 20

LightGCN

BPR 0.001 0

GuidedRec 0.001 0

SONG@20 0.1 0 0.7 0.001

LLPAUC 0.1 0 0.7 0.01

SL 0.1 0 0.1

AdvInfoNCE 0.1 0 0.1

BSL 0.1 0 0.05 0.1

PSL 0.1 0 0.05

SL@20 0.01 0 0.1 0.75 5

XSimGCL

BPR 0.0001 0

GuidedRec 0.001 0

SONG@20 0.1 0 0.1 0.001

LLPAUC 0.1 0 0.7 0.01

SL 0.01 0 0.1

AdvInfoNCE 0.1 0 0.1

BSL 0.1 0 0.05 0.1

PSL 0.1 0 0.05

SL@20 0.01 0 0.1 0.75 5

Table 14: Optimal hyperparameters on the Book dataset.

Model Loss Hyperparameters

MF

BPR 0.0001 0

GuidedRec 0.001 0

SONG@20 0.1 0 0.1 0.001

LLPAUC 0.1 0 0.7 0.01

SL 0.1 0 0.05

AdvInfoNCE 0.01 0 0.1

BSL 0.1 0 0.5 0.05

PSL 0.1 0 0.025

SL@20 0.01 0 0.05 0.5 20

LightGCN

BPR 0.001 0

GuidedRec 0.001 0

SONG@20 0.1 0 0.1 0.01

LLPAUC 0.1 0 0.7 0.01

SL 0.1 0 0.05

AdvInfoNCE 0.1 0 0.1

BSL 0.1 0 0.5 0.05

PSL 0.1 0 0.025

SL@20 0.01 0 0.05 0.5 20

XSimGCL

BPR 0.0001 0.00001

GuidedRec 0.1 0

SONG@20 0.1 0 0.1 0.001

LLPAUC 0.1 0 0.7 0.01

SL 0.1 0 0.05

AdvInfoNCE 0.1 0 0.1

BSL 0.1 0 0.05 0.05

PSL 0.1 0 0.025

SL@20 0.01 0 0.05 0.5 20

Table 15: Optimal hyperparameters on MovieLens dataset.

Model Loss Hyperparameters

MF

LambdaRank 0.01 0.000001

LambdaLoss 0.001 0.00001

LambdaLoss-S 0.01 0.0001

LambdaLoss@20 0.001 0.00001

LambdaLoss@20-S 0.01 0.00001

SL@20 0.01 0 0.2 3 5

Table 16: Optimal hyperparameters on Food dataset.

Model Loss Hyperparameters

MF

LambdaRank 0.001 0.00001

LambdaLoss 0.01 0.00001

LambdaLoss-S 0.001 0.0001

LambdaLoss@20 0.001 0.00001

LambdaLoss@20-S 0.01 0.000001

SL@20 0.01 0 0.2 2.25 5

and Yang et al. [84], the hyperparameter search space for SL is as

follows:

• lr ∈ {10
−1, 10

−2, 10
−3}.

• wd ∈ {0, 10
−4, 10

−5, 10
−6}.

• 𝜏 ∈ {0.01, 0.05, 0.1, 0.2, 0.5}.
AdvInfoNCE [87]. AdvInfoNCE is a Distributionally Robust Op-

timization (DRO) [65]-based modification of SL. It introduces adap-

tive negative hardness into the pairwise score difference 𝑑𝑢𝑖 𝑗 in SL.

Though this modification may lead to robustness enhancement, it

also enlarges the gap between loss and DCG optimization target,

which may lead to suboptimal performance [84]. In practical im-

plementation, following the original settings in Zhang et al. [87],

the negative weight is fixed at 64, the adversarial learning is per-

formed every 5 epochs, and the adversarial learning rate is set to

5 × 10
−5
. The score function 𝑠𝑢𝑖 in AdvInfoNCE is defined as the

cosine similarity between user and item embeddings. The search

space of other hyperparameters for AdvInfoNCE is as follows:

• lr ∈ {10
−1, 10

−2, 10
−3}.

• wd ∈ {0, 10
−4, 10

−5, 10
−6}.

• 𝜏 ∈ {0.01, 0.05, 0.1, 0.2, 0.5}.
BSL [81]. BSL is a DRO-based modification of SL that applies

additional DRO to positive instances. It introduces two temperature

hyperparameters, 𝜏1 and 𝜏2. When 𝜏1 = 𝜏2, BSL is equivalent to SL.

The score function 𝑠𝑢𝑖 in BSL is defined as the cosine similarity

between user and item embeddings. Following the settings in Wu

et al. [81] and Yang et al. [84], the hyperparameter search space for

BSL is as follows:

• lr ∈ {10
−1, 10

−2, 10
−3}.

• wd ∈ {0, 10
−4, 10

−5, 10
−6}.

Breaking the Top-𝐾 Barrier: Advancing Top-𝐾 Ranking Metrics Optimization in Recommender Systems KDD ’25, August 3–7, 2025, Toronto, ON, Canada.

Table 17: Performance comparison between LambdaLoss@𝐾

and SL@𝐾 onMF backbone. "Imp." denotes the improvement
of SL@𝐾 over LambdaLoss@𝐾 , while "Degr." denotes the
degradation of LambdaLoss@𝐾 caused by the sample esti-
mation (i.e., LambdaLoss@𝐾-S). "R@20" and "D@20" denote
the Recall@20 and NDCG@20 metrics, respectively. "Time"
denotes the average training time (s) per epoch.

Loss
MovieLens Food

R@20 D@20 Time/s R@20 D@20 Time/s

LambdaLoss@20 0.3418 0.3466 26 0.0530 0.0382 494

LambdaLoss@20-S 0.1580 0.1603 6 0.0335 0.0238 36

SL@20 (Ours) 0.3580 0.3677 2 0.0635 0.0465 8

Degr. % -53.77% -53.75% – -36.79% -37.70% –

Imp. % +4.74% +6.09% – +19.81% +21.73% –

2.0 2.5 3.0
w

0.125

0.130

0.135

N
D

C
G

@
20

Health

SL@20
SL

2.0 2.5 3.0
w

0.054

0.056

0.058

N
D

C
G

@
20

Electronic

SL@20
SL

Figure 7: Sensitivity analysis of SL@𝐾 on 𝜏𝑤 .

• 𝜏1, 𝜏2 ∈ {0.01, 0.05, 0.1, 0.2, 0.5}.
PSL [84]. PSL is an NDCG surrogate loss that generalizes SL by

substituting the exponential function with a more appropriate acti-

vation function. Yang et al. [84] proved that PSL establishes a tighter

upper bound of − log DCG than SL, thereby leading to SOTA rec-

ommendation performance. Additionally, PSL not only retains the

advantages of SL in terms of DRO robustness, but also enhances the

noise resistance against false negatives. PSL is also hyperparameter-

efficient, requiring only a single temperature hyperparameter 𝜏 to

control the smoothness of the gradients. The score function 𝑠𝑢𝑖
in PSL is defined as half the cosine similarity between user and

item embeddings. The hyperparameter search space for PSL is as

follows:

• lr ∈ {10
−1, 10

−2, 10
−3}.

• wd ∈ {0, 10
−4, 10

−5, 10
−6}.

• 𝜏 ∈ {0.005, 0.025, 0.05, 0.1, 0.25}.
SL@𝐾 (ours). SL@𝐾 is a DCG@𝐾 surrogate loss proposed in

this study. Formally, SL@𝐾 is a weighted SL with weight 𝑤𝑢𝑖 =

𝜎𝑤 (𝑠𝑢𝑖 −𝛽𝐾𝑢), where 𝛽𝐾𝑢 is the Top-𝐾 quantile of user𝑢’s preference

scores over all items, and 𝜎𝑤 is an activation function (e.g., the sig-

moid function). Intuitively, the weight𝑤𝑢𝑖 is designed to emphasize

the importance of Top-𝐾 items in the gradients, thereby enhancing

Top-𝐾 recommendation performance. Compared to the conven-

tional SL, SL@𝐾 introduces several hyperparameters, including

the temperature hyperparameter 𝜏𝑤 for the quantile-based weight,

the temperature hyperparameter 𝜏𝑑 for the SL loss term, and the

quantile update interval 𝑇𝛽 . In practice, 𝜏𝑑 can be set directly to

the optimal temperature 𝜏 of SL. The score function 𝑠𝑢𝑖 in SL@𝐾 is

defined as the cosine similarity between user and item embeddings.

The hyperparameter search space for SL@𝐾 is as follows:

• lr ∈ {10
−1, 10

−2, 10
−3}.

• wd ∈ {0, 10
−4, 10

−5, 10
−6}.

• 𝜏𝑤 ∈ [0.5, 3.0], with a search step of 0.25.

• 𝜏𝑑 ∈ {0.01, 0.05, 0.1, 0.2, 0.5} (set directly to the optimal tempera-

ture hyperparameter 𝜏 in SL).

• 𝑇𝛽 ∈ {5, 20}.

D.5 Optimal Hyperparameters
We report the optimal hyperparameters of each method on each

dataset and backbone in Tables 11 to 16. The hyperparameters are

listed in the same order as in Table 10.

D.6 Information Retrieval Tasks
In addition to the recommendation tasks, we also evaluate SL@𝐾

on three additional information retrieval tasks: learning to rank

(LTR), sequential recommendation (SeqRec), and link prediction

(LP). The experimental setup is as follows:

• Learning to rank (LTR): LTR aims to order a list of candidate

items according to their relevance to a given query. Following

Pobrotyn and Białobrzeski [57], we compare SL@𝐾 with existing

LTR losses on a Transformer-based backbone [70] and three

datasets (WEB10K, WEB30K [58], and Istella [15]). The baselines

include ListMLE [83], ListNet [8], RankNet [6], LambdaLoss@𝐾

[31], NeuralNDCG [57], and SL [82].

• Sequential recommendation (SeqRec): SeqRec focuses on
next item prediction in a user’s interaction sequence. Following

prior work [36], we compare SL@𝐾 with BCE [36] and SL [82]

on Beauty and Games [23, 50] datasets based on SASRec [36].

• Link prediction (LP): LP aims to predict links between two

nodes in a graph. Following Li et al. [43], we compare SL@𝐾

with BCE [28] and SL [82] on a GCN [38] backbone and two

datasets (Cora and Citeseer [64, 85]).

E Supplementary Experimental Results
SL@𝐾 vs. Lambda Losses. In Tables 17 and 18, we compare the

performance of SL@𝐾 against three Lambda losses, including Lamb-

daRank [5], LambdaLoss [77], and LambdaLoss@𝐾 [31]. Results

show that SL@𝐾 significantly outperforms Lambda losses in terms

of accuracy and efficiency. As discussed in Section 4.2 and Appen-

dix A, Lambda losses suffer from unstable and ineffective optimiza-

tion processes, leading to suboptimal performance. Additionally,

they incur significantly higher computational costs compared to

SL@𝐾 . While sampling strategies (i.e., sample ranking estimation

in Appendix C.4) could be employed to accelerate the Lambda losses,

these approaches result in substantial performance degradation.

Hyperparameter sensitivity. Figure 7 depicts the performance

with varying hyperparameter 𝜏𝑤 in SL@𝐾 . Initially, performance

improves as 𝜏𝑤 increases, but beyond a certain point, further in-

creases lead to performance degradation. This indicates an inherent

trade-off. When 𝜏𝑤 is small, the surrogate for NDCG@𝐾 is tighter,

potentially improvingNDCG@𝐾 alignment but increasing the train-

ing difficulty due to reduced Lipschitz smoothness. As 𝜏𝑤 increases,

the approximation becomes looser, also impacting performance.

Noise robustness. Figure 8 illustrates the false positive robustness
of SL@𝐾 compared to SL, as a supplement to Figure 3.

KDD ’25, August 3–7, 2025, Toronto, ON, Canada. Weiqin Yang et al.

Table 18: Supplementary results of Table 17: Performance comparison of SL@𝐾 against three Lambda losses on MF backbone,
including LambdaRank, LambdaLoss, and LambdaLoss@𝐾 . The best results are highlighted in bold, and the best baselines are
underlined. "Imp." denotes the improvement of SL@𝐾 over the best Lambda loss, while "Degr." denotes the degradation of
Lambda losses caused by the sample ranking estimation (i.e., LambdaLoss-S and LambdaLoss@𝐾-S, cf. Appendix C.4).

Loss
MovieLens Food

Recall@20 NDCG@20 Recall@20 NDCG@20

LambdaRank 0.3077 0.3043 0.0520 0.0377

LambdaLoss 0.3425 0.3460 0.0515 0.0374

LambdaLoss-S 0.1497 0.1523 0.0333 0.0243

Degr. % -56.29% -55.98% -35.34% -35.03%

LambdaLoss@20 0.3418 0.3466 0.0530 0.0382

LambdaLoss@20-S 0.1580 0.1603 0.0335 0.0238

Degr. % -53.77% -53.75% -36.79% -37.70%

SL@20 0.3580 0.3677 0.0635 0.0465

Imp. % +4.53% +6.09% +19.81% +21.73%

0% 5% 10% 15% 20%
Noise Ratio

0.110

0.115

0.120

0.125

0.130

0.135

0.140
Health

0% 5% 10% 15% 20%
Noise Ratio

0.045

0.048

0.050

0.053

0.055

0.058

Electronic

0% 5% 10% 15% 20%
Noise Ratio

0.150

0.155

0.160

0.165

0.170

Gowalla

0% 5% 10% 15% 20%
Noise Ratio

0.110

0.115

0.120

0.125

Book

0%

4%

8%

12%

16%

20%

0%

4%

8%

12%

16%

20%

24%

0%

4%

8%

12%

16%

0%

4%

8%

12%

16%

SL (NDCG@20) SL@20 (NDCG@20) Imp. (%)

Figure 8: NDCG@20 performance of SL@𝐾 compared with SL under varying ratios of imposed false positive instances. "Noise
Ratio" denotes the ratio of false positive instances. "Imp." indicates the improvement of SL@𝐾 over SL.

	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Top-K Recommendation
	2.2 NDCG@K Metric
	2.3 Softmax Loss

	3 Methodology
	3.1 Proposed Loss: SoftmaxLoss@K
	3.2 Analyses of SL@K

	4 Experiments
	4.1 Experimental Setup
	4.2 Performance Comparison

	5 Related Work
	6 Conclusion and Future Directions
	Acknowledgments
	References
	A Analysis of NDCG@K Surrogate Losses
	B Additional Theoretical Analysis of SL@K
	B.1 Activation Functions in SL@K
	B.2 Proof of Theorem SL@K
	B.3 Gradient Analysis and Noise Robustness

	C Sample Quantile Estimation
	C.1 Proof of Theorem Quantile Estimation
	C.2 Negative Sampling Trick
	C.3 Quantile Regression
	C.4 Sample Ranking Estimation
	C.5 SL@K Optimization

	D Experimental Details
	D.1 Datasets
	D.2 Recommendation Scenarios
	D.3 Recommendation Backbones
	D.4 Recommendation Losses
	D.5 Optimal Hyperparameters
	D.6 Information Retrieval Tasks

	E Supplementary Experimental Results

