
Computer Graphics

Ray Tracing 1
(Whitted-Style Ray Tracing)
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Last Lectures

• Barycentric Coordinates

• Applying Textures

• Texture Magnification

• Too small?

• Too larger?

• Mipmap

• Applications of Textures

• Environment Map

• Bump / normal mapping

• Displacement mapping

• Precomputed Shading
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Barycentric Coordinates

A coordinate system for triangles

Inside the triangle if  

all three coordinates  

are non-negative
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https://www.inf.usi.ch/hormann/barycentric/index.html



Barycentric Coordinates

Geometric viewpoint — proportional areas
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Texture Magnification - Easy Case

Generally don’t want this — insufficient texture resolution

A pixel on a texture — a texel (

Nearest Bilinear Bicubic

)

5



Point Sampling Textures — Problem

Jaggies

Moire

Point sampledReference
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Screen Pixel “Footprint” in Texture

Upsampling  

(Magnificat ion)

Downsampling  

(Minificat ion)
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Mipmap (L. Williams 83)

Level 2 = 32x32 Level 3 = 16x16

Level 4 = 8x8 Level 5 = 4x4

Level 1 = 64x64Level 0 = 128x128

Level 6 = 2x2 Level 7 = 1x1

“Mip”  comes from the Latin “multum in parvo", meaning a multitude in a smallspace
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Trilinear Interpolation

Mipmap Level D

Bilinear result

Mipmap Level D+1

Bilinear result

Linear interpolation based on continuous D value
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Environment Map
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Light from the environment Rendering with the environment
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Textures can affectshading!

• Displacement mapping — a more advanced approach

- Uses the same texture as in bumping mapping

- Actually moves the vertices

Bump / Normal mapping
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Displacement mapping
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重心坐标可以用于插值哪些信息？

Depth

Material attributes

RGB from Mipmap 

Normal

A

B

C

D

提交

PositionsE

UV coordinateF

多选题 1分
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Mipmap增加了多少存储空间？

1/4

1/3

1/2

1

A

B

C

D

提交

单选题 1分



Rasterization

Ray tracing

Geometry

Animation /simulation

Course Roadmap
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• Rasterization couldn’t handle global effects well

-

-

(Soft) shadows

And especially when the light bounces more thanonce

Soft shadows Glossy reflection Indirect illumination

Why Ray Tracing?
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• Rasterization is fast, but quality is relatively low

Buggy, from PlayerUnknown’s Battlegrounds (PC game)

Why Ray Tracing?
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• Ray tracing is accurate, but is veryslow

- Rasterization: real-time, ray tracing: offline

- ~10K CPU corehours to render one frame in production

Zootopia, Disney Animation

Why Ray Tracing?

17



Basic Ray-Tracing Algorithm
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Light Rays

Three ideas about light rays

1. Light travels in straight lines (though this is wrong)

2. Light rays do not “collide” with each other if theycross  

(though this is still wrong)

3. Light rays travel from the light sources to the eye (but  

the physics is invariant under path reversal - reciprocity).

“And if you gaze long into an abyss, the abyss also gazes  

into you.” — Friedrich Wilhelm Nietzsche (translated)
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Slide courtesy of Prof. Alexei Efros, UC Berkeley20
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Ray Casting

Appel 1968 - Ray casting

1. Generate an image by casting one ray per pixel

2. Check for shadows by sending a ray to the light
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Ray Casting - Generating Eye Rays

Pinhole Camera Model

eye point

image plane

light source

eye ray

(starts at eye and goes  

through pixel)

closest scene  

intersection point

note: more intersection  

points

(or the near plane

in perspective projection)
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Ray Casting - Shading Pixels (Local Only)

Pinhole Camera Model

eye point

image plane

light source

eye ray

(starts at eye and goes  

through pixel)

perform shading calculation  

here to compute color of pixel  

(e.g. Blinn Phong model)
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Recursive (Whitted-Style) Ray Tracing

“An improved Illumination  

model for shaded display”

T. Whitted, CACM1980

Time:

• VAX 11/780 (1979) 74m

• PC (2006) 6s

• GPU (2012) 1/30s

Spheres and Checkerboard, T. Whitted, 1979
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Recursive Ray Tracing

eye point

image plane

light source
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Recursive Ray Tracing

eye point

image plane

light source

Reflected ray  

(specular reflection)
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Recursive Ray Tracing

eye point

image plane

light source

Refracted rays  

(specular transmission)
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Recursive Ray Tracing

eye point

image plane

light source

Shadow rays
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Recursive Ray Tracing

eye point

image plane

light source

primary ray

secondary rays

shadow rays
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Recursive Ray Tracing
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Ray-Surface Intersection
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Ray Equation

origin (normalized) direction“ time”point along ray

Ray equation:

Ray is defined by its origin and a direction vector

Example:
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Ray Intersection With Sphere

Ray:

Sphere:

What i s  an intersection?

The intersection p must satisfy both  

ray equation and sphere equation

Solve for intersection:
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Ray Intersection With Sphere

Solve for intersection:
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Ray Intersection With Implicit Surface

Ray:

General implicit surface:

Substitute ray equation:  

Solve for real, positive roots
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Ray Intersection With Triangle Mesh

Why?

• Rendering: visibility, shadows,  

lighting …

• Geometry: inside/outside test  

How to compute?

Let’s break this down:

• Simple idea: just intersect ray with each triangle

• Simple, but slow (acceleration?)

• Note: can have 0, 1 intersections  

(ignoring multiple intersections)
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Ray Intersection With Triangle

Triangle is in a plane

• Ray-plane intersection

• Test if hit point is inside  

triangle

Many ways to optimize…
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Plane Equation

Plane is defined by normal vector and a point on plane

Example:

Plane Equation (if p satisfies it, then p is on the plane):

normal vectorone point  

on plane

all points on plane
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Ray Intersection With Plane

Ray equation:

Plane equation:  

Solve for intersection

Check:
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Möller Trumbore Algorithm

A faster approach, giving barycentric coordinate directly  

Derivation in the discussion section!

Recall: How to determine  

if the “intersection” is  

inside the triangle?

Hint:

(1-b1-b2), b1, b2 are  

barycentric coordinates!
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Accelerating Ray-Surface  

Intersection
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Ray Tracing – Performance Challenges

Simple ray-scene intersection

• Exhaustively test ray-intersection with every triangle

• Find the closest hit (i.e. minimum t)

Problem:

• Naive algorithm = #pixels ⨉# traingles (⨉#bounces)

• Very slow!

For generality, we use the term objects instead of triangles  

later (but doesn’t necessarily mean entire objects)
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Ray Tracing – Performance Challenges

San Miguel Scene, 10.7M triangles

Jun Yan, Tracy Renderer
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Ray Tracing – Performance Challenges

Plant Ecosystem, 20M triangles

Deussen et al; Pharr & Humphreys, PBRT
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Bounding Volumes
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Bounding Volumes

Quick way to avoid intersections: bound complex object  

with a simple volume

• Object is fully contained in the volume

• If it doesn’t hit the volume, it doesn’t hit theobject

• So test BVol first, then test object if it hits
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Ray-Intersection With Box

Understanding: box is the intersection of 3 pairs of slabs

Specifically:

We often use an
Axis-Aligned  

Bounding Box (AABB)

( )

i.e. any side of the BB  

is along either x, y, or z  

axis
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Liang-baskey algorithm

Which part of the line segment is visible?

Rewrite as 

1 2

𝑥𝑙 𝑥𝑟

𝑢∆𝑥 ≤ 𝑥𝑟 − 𝑥12

−𝑢∆𝑥 ≤ 𝑥1 − 𝑥𝑙1 1

2

1. 如果∆𝑥=0，线段平行于X
1. q𝑘 < 0, outside
2. q𝑘 ≥ 0, 𝑖𝑛𝑠𝑖𝑑𝑒

2. 如果∆𝑥 ≠0, 线段不平行

• Compute all rk=qk/pk

• u1 is max(0, rin)

• u2 is min(1, rout)

• If u1>u2, outside the window

• else, the part is from u1 -> u2

u1 and u2 defines the part of segment that is inside the window
48

如果p𝑘 < 0： 入边

如果p𝑘 > 0： 出边



• u1 and u2 defines the part of segment that is inside the window

• Compute all rk=qk/pk

• u1 is max(0, rin1, rin2)

• u2 is min(1, rout1, rout2)

• If u1>u2, the segment is completely outside the window

• else, the part is from u1 -> u2

Liang-baskey algorithm
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Liang-baskey algorithm
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Ray Intersection with Axis-Aligned Box

2D example; 3D is the same! Compute intersections with slabs  

and take intersection of tmin/tmax intervals

tmin

tmax

tmax

tmin

tmax

tmin

Note: tmin < 0

Intersections with xplanes Intersections with yplanes Final intersection result

How do we know when the ray intersects the box?
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• Recall: a box (3D) = three pairs of infinitely large slabs

• Key ideas

-

-

The ray enters the box only when it enters all pairs of slabs  

The ray exits the box as long as it exits any pair ofslabs

• For each pair, calculate the tmin and tmax (negative isfine)

• For the 3D box, tenter = max{tmin}, texit = min{tmax}

• If tenter < texit, we know the ray stays a while in the box  

(so they must intersect!) (not done yet, see the next slide)

Ray Intersection with Axis-Aligned Box
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• However, ray is not a line

- Should check whether t is negative for physicalcorrectness!

• What if texit < 0?

- The box is “behind” the ray — nointersection!

• What if texit >= 0 and tenter < 0?

- The ray’s origin is inside the box — have intersection!

• In summary, ray and AABB intersect iff

- tenter < texit && texit >=0

Ray Intersection with Axis-Aligned Box
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Why Axis-Aligned?

3 subtractions, 6 multiplies, 1 division

1 subtraction, 1 division

General

Slabs  

perpendicular  

to x-axis
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Uniform Spatial Partitions (Grids)
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Preprocess – Build Acceleration Grid

1. Find bounding box
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Preprocess – Build Acceleration Grid

1. Find bounding box

2. Create grid
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Preprocess – Build Acceleration Grid

1. Find bounding box

2. Create grid

3. Store each object  

in overlapping cells
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Ray-Scene Intersection

Step through grid in ray  

traversal order

For each grid cell  

Test intersection  

with all objects  

stored at that cell
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Grid Resolution?

One cell

• No speedup
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Grid Resolution?

Too many cells

• Inefficiency due  

to extraneous  

grid traversal
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Grid Resolution?

Heuristic:

• #cells = C * #objs

• C ≈  27 in 3D
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Uniform Grids – When They Work Well

Deussen et al; Pharr & Humphreys, PBRT

Grids work well on large collections of objects  

that are distributed evenly in size and space
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Jun Yan, Tracy Renderer

Uniform Grids – When They Fail

“Teapot in a stadium” problem
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Spatial Partitions
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Spatial Partitioning Examples

BSP-TreeKD-Tree

Note: you could have these in both 2D and 3D. In lecture we will illustrate principles in 2D.

Oct-Tree
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KD-Tree Pre-Processing

A

A
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KD-Tree Pre-Processing

A

A

B

B
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D 3

2 C

KD-Tree Pre-Processing

A

1

D

2

C
B

4

3

5

1 B

A

4 5

Note: also subdivide  

nodes 1 and 2, etc.
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Data Structure for KD-Trees

Internal nodes store

• split axis: x-, y-, or z-axis

• split position: coordinate of split plane along axis

• children: pointers to child nodes

• No objects are stored in internal nodes

Leaf nodes store

• list of objects
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4 5

D 3

2 C

Traversing a KD-Tree

A

B
C

D

1 B

A

71



4 5

D 3

2 C

Traversing a KD-Tree

1 B

A

tmin

tmax

Internal node: split

72



4 5

D 3

2 C

Traversing a KD-Tree

1 B

A

tmin

tmax

Assume it’s leaf node:  

intersect all objects
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4 5

D 3

2 C

Traversing a KD-Tree

1 B

A

tmin

tmax

Internal node: split
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4 5

D 3

2 C

Traversing a KD-Tree

1 B

A

tmin

tmax

Leaf node: intersect  

all objects
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4 5

D 3

2 C

Traversing a KD-Tree

1 B

A

tmin

tmax

Internal node: split
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4 5

D 3

2 C

Traversing a KD-Tree

1 B

A

tmin

tmax

Leaf node: intersect  

all objects
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4 5

D 3

2 C

Traversing a KD-Tree

1 B

A

Intersection found
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Object Partitions &

Bounding Volume Hierarchy (BVH)
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Bounding Volume Hierarchy (BVH)

Root
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Bounding Volume Hierarchy (BVH)
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Bounding Volume Hierarchy (BVH)
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C D

B

Bounding Volume Hierarchy (BVH)

A

A
B

C

D
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Summary: Building BVHs

• Find bounding box

• Recursively split set of  

objects in two subsets

• Recompute the bounding  

box of the subsets

• Stop when necessary

• Store objects in each leaf  

node
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Building BVHs

How to subdivide a node?

• Choose a dimension to split

• Heuristic #1: Always choose the longest axis in node

• Heuristic #2: Split node at location of median object

Termination criteria?

• Heuristic: stop when node contains few elements  

(e.g. 5)

85



Data Structure for BVHs

Internal nodes store

• Bounding box

• Children: pointers to child nodes  

Leaf nodes store

• Bounding box

• List of objects

Nodes represent subset of primitives in scene

• All objects in subtree
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BVH Traversal

Intersect(Ray ray, BVH node) {

if (ray misses node.bbox) return;

if (node is a leaf node)

test intersection with all objs;  

return closest intersection;

hit1 = Intersect(ray, node.child1);  

hit2 = Intersect(ray, node.child2);

return the closer of hit1, hit2;

}

node

child1 child2
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Spatial vs Object Partitions

Spatial partition (e.g.KD-tree)

• Partition space into

non-overlapping regions

• An object can be contained  

in multiple regions

Object partition (e.g. BVH)

• Partition set of objects into  

disjoint subsets

• Bounding boxes for each set  

may overlap in space
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Thank you!
(And thank Prof. Ravi Ramamoorthi and Prof. Ren Ng for many of the slides!)
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