
Computer Graphics

Ray Tracing 1
(Whitted-Style Ray Tracing)

1

Last Lectures

• Barycentric Coordinates

• Applying Textures

• Texture Magnification

• Too small?

• Too larger?

• Mipmap

• Applications of Textures

• Environment Map

• Bump / normal mapping

• Displacement mapping

• Precomputed Shading

2

Barycentric Coordinates

A coordinate system for triangles

Inside the triangle if

all three coordinates

are non-negative

3

https://www.inf.usi.ch/hormann/barycentric/index.html

Barycentric Coordinates

Geometric viewpoint — proportional areas

4

Texture Magnification - Easy Case

Generally don’t want this — insufficient texture resolution

A pixel on a texture — a texel (

Nearest Bilinear Bicubic

)

5

Point Sampling Textures — Problem

Jaggies

Moire

Point sampledReference

6

Screen Pixel “Footprint” in Texture

Upsampling

(Magnificat ion)

Downsampling

(Minificat ion)

7

Mipmap (L. Williams 83)

Level 2 = 32x32 Level 3 = 16x16

Level 4 = 8x8 Level 5 = 4x4

Level 1 = 64x64Level 0 = 128x128

Level 6 = 2x2 Level 7 = 1x1

“Mip” comes from the Latin “multum in parvo", meaning a multitude in a smallspace

8

Trilinear Interpolation

Mipmap Level D

Bilinear result

Mipmap Level D+1

Bilinear result

Linear interpolation based on continuous D value

9

Environment Map

[B
li
n
n
 &

 N
e
w

e
ll

1
9
7
6
]

10

Light from the environment Rendering with the environment

10

Textures can affectshading!

• Displacement mapping — a more advanced approach

- Uses the same texture as in bumping mapping

- Actually moves the vertices

Bump / Normal mapping

11

Displacement mapping

12

重心坐标可以用于插值哪些信息？

Depth

Material attributes

RGB from Mipmap

Normal

A

B

C

D

提交

PositionsE

UV coordinateF

多选题 1分

13

Mipmap增加了多少存储空间？

1/4

1/3

1/2

1

A

B

C

D

提交

单选题 1分

Rasterization

Ray tracing

Geometry

Animation /simulation

Course Roadmap

14

• Rasterization couldn’t handle global effects well

-

-

(Soft) shadows

And especially when the light bounces more thanonce

Soft shadows Glossy reflection Indirect illumination

Why Ray Tracing?

15

• Rasterization is fast, but quality is relatively low

Buggy, from PlayerUnknown’s Battlegrounds (PC game)

Why Ray Tracing?

16

• Ray tracing is accurate, but is veryslow

- Rasterization: real-time, ray tracing: offline

- ~10K CPU corehours to render one frame in production

Zootopia, Disney Animation

Why Ray Tracing?

17

Basic Ray-Tracing Algorithm

18

Light Rays

Three ideas about light rays

1. Light travels in straight lines (though this is wrong)

2. Light rays do not “collide” with each other if theycross

(though this is still wrong)

3. Light rays travel from the light sources to the eye (but

the physics is invariant under path reversal - reciprocity).

“And if you gaze long into an abyss, the abyss also gazes

into you.” — Friedrich Wilhelm Nietzsche (translated)

19

可逆性

Slide courtesy of Prof. Alexei Efros, UC Berkeley20

恩培多克勒
柏拉图
欧几里得
托勒密

Ray Casting

Appel 1968 - Ray casting

1. Generate an image by casting one ray per pixel

2. Check for shadows by sending a ray to the light

21

Ray Casting - Generating Eye Rays

Pinhole Camera Model

eye point

image plane

light source

eye ray

(starts at eye and goes

through pixel)

closest scene

intersection point

note: more intersection

points

(or the near plane

in perspective projection)

22

Ray Casting - Shading Pixels (Local Only)

Pinhole Camera Model

eye point

image plane

light source

eye ray

(starts at eye and goes

through pixel)

perform shading calculation

here to compute color of pixel

(e.g. Blinn Phong model)

23

Recursive (Whitted-Style) Ray Tracing

“An improved Illumination

model for shaded display”

T. Whitted, CACM1980

Time:

• VAX 11/780 (1979) 74m

• PC (2006) 6s

• GPU (2012) 1/30s

Spheres and Checkerboard, T. Whitted, 1979

24

Recursive Ray Tracing

eye point

image plane

light source

25

Recursive Ray Tracing

eye point

image plane

light source

Reflected ray

(specular reflection)

26

Recursive Ray Tracing

eye point

image plane

light source

Refracted rays

(specular transmission)

27

Recursive Ray Tracing

eye point

image plane

light source

Shadow rays

28

Recursive Ray Tracing

eye point

image plane

light source

primary ray

secondary rays

shadow rays

29

Recursive Ray Tracing

30

Ray-Surface Intersection

31

Ray Equation

origin (normalized) direction“ time”point along ray

Ray equation:

Ray is defined by its origin and a direction vector

Example:

32

Ray Intersection With Sphere

Ray:

Sphere:

What i s an intersection?

The intersection p must satisfy both

ray equation and sphere equation

Solve for intersection:

33

Ray Intersection With Sphere

Solve for intersection:

34

Ray Intersection With Implicit Surface

Ray:

General implicit surface:

Substitute ray equation:

Solve for real, positive roots

35

Ray Intersection With Triangle Mesh

Why?

• Rendering: visibility, shadows,

lighting …

• Geometry: inside/outside test

How to compute?

Let’s break this down:

• Simple idea: just intersect ray with each triangle

• Simple, but slow (acceleration?)

• Note: can have 0, 1 intersections

(ignoring multiple intersections)

36

Ray Intersection With Triangle

Triangle is in a plane

• Ray-plane intersection

• Test if hit point is inside

triangle

Many ways to optimize…

37

Plane Equation

Plane is defined by normal vector and a point on plane

Example:

Plane Equation (if p satisfies it, then p is on the plane):

normal vectorone point

on plane

all points on plane

38

Ray Intersection With Plane

Ray equation:

Plane equation:

Solve for intersection

Check:

39

Möller Trumbore Algorithm

A faster approach, giving barycentric coordinate directly

Derivation in the discussion section!

Recall: How to determine

if the “intersection” is

inside the triangle?

Hint:

(1-b1-b2), b1, b2 are

barycentric coordinates!

40

Accelerating Ray-Surface

Intersection

41

Ray Tracing – Performance Challenges

Simple ray-scene intersection

• Exhaustively test ray-intersection with every triangle

• Find the closest hit (i.e. minimum t)

Problem:

• Naive algorithm = #pixels ⨉# traingles (⨉#bounces)

• Very slow!

For generality, we use the term objects instead of triangles

later (but doesn’t necessarily mean entire objects)

42

Ray Tracing – Performance Challenges

San Miguel Scene, 10.7M triangles

Jun Yan, Tracy Renderer

43

Ray Tracing – Performance Challenges

Plant Ecosystem, 20M triangles

Deussen et al; Pharr & Humphreys, PBRT

44

Bounding Volumes

45

Bounding Volumes

Quick way to avoid intersections: bound complex object

with a simple volume

• Object is fully contained in the volume

• If it doesn’t hit the volume, it doesn’t hit theobject

• So test BVol first, then test object if it hits

46

Ray-Intersection With Box

Understanding: box is the intersection of 3 pairs of slabs

Specifically:

We often use an
Axis-Aligned

Bounding Box (AABB)

()

i.e. any side of the BB

is along either x, y, or z

axis

47

Liang-baskey algorithm

Which part of the line segment is visible?

Rewrite as

1 2

𝑥𝑙 𝑥𝑟

𝑢∆𝑥 ≤ 𝑥𝑟 − 𝑥12

−𝑢∆𝑥 ≤ 𝑥1 − 𝑥𝑙1 1

2

1. 如果∆𝑥=0，线段平行于X
1. q𝑘 < 0, outside
2. q𝑘 ≥ 0, 𝑖𝑛𝑠𝑖𝑑𝑒

2. 如果∆𝑥 ≠0, 线段不平行

• Compute all rk=qk/pk

• u1 is max(0, rin)

• u2 is min(1, rout)

• If u1>u2, outside the window

• else, the part is from u1 -> u2

u1 and u2 defines the part of segment that is inside the window
48

如果p𝑘 < 0： 入边

如果p𝑘 > 0： 出边

• u1 and u2 defines the part of segment that is inside the window

• Compute all rk=qk/pk

• u1 is max(0, rin1, rin2)

• u2 is min(1, rout1, rout2)

• If u1>u2, the segment is completely outside the window

• else, the part is from u1 -> u2

Liang-baskey algorithm

49

Liang-baskey algorithm

50

Ray Intersection with Axis-Aligned Box

2D example; 3D is the same! Compute intersections with slabs

and take intersection of tmin/tmax intervals

tmin

tmax

tmax

tmin

tmax

tmin

Note: tmin < 0

Intersections with xplanes Intersections with yplanes Final intersection result

How do we know when the ray intersects the box?
51

• Recall: a box (3D) = three pairs of infinitely large slabs

• Key ideas

-

-

The ray enters the box only when it enters all pairs of slabs

The ray exits the box as long as it exits any pair ofslabs

• For each pair, calculate the tmin and tmax (negative isfine)

• For the 3D box, tenter = max{tmin}, texit = min{tmax}

• If tenter < texit, we know the ray stays a while in the box

(so they must intersect!) (not done yet, see the next slide)

Ray Intersection with Axis-Aligned Box

52

• However, ray is not a line

- Should check whether t is negative for physicalcorrectness!

• What if texit < 0?

- The box is “behind” the ray — nointersection!

• What if texit >= 0 and tenter < 0?

- The ray’s origin is inside the box — have intersection!

• In summary, ray and AABB intersect iff

- tenter < texit && texit >=0

Ray Intersection with Axis-Aligned Box

53

Why Axis-Aligned?

3 subtractions, 6 multiplies, 1 division

1 subtraction, 1 division

General

Slabs

perpendicular

to x-axis

54

Uniform Spatial Partitions (Grids)

55

Preprocess – Build Acceleration Grid

1. Find bounding box

56

Preprocess – Build Acceleration Grid

1. Find bounding box

2. Create grid

57

Preprocess – Build Acceleration Grid

1. Find bounding box

2. Create grid

3. Store each object

in overlapping cells

58

Ray-Scene Intersection

Step through grid in ray

traversal order

For each grid cell

Test intersection

with all objects

stored at that cell

59

Grid Resolution?

One cell

• No speedup

60

Grid Resolution?

Too many cells

• Inefficiency due

to extraneous

grid traversal

61

Grid Resolution?

Heuristic:

• #cells = C * #objs

• C ≈ 27 in 3D

62

Uniform Grids – When They Work Well

Deussen et al; Pharr & Humphreys, PBRT

Grids work well on large collections of objects

that are distributed evenly in size and space

63

Jun Yan, Tracy Renderer

Uniform Grids – When They Fail

“Teapot in a stadium” problem

64

Spatial Partitions

65

Spatial Partitioning Examples

BSP-TreeKD-Tree

Note: you could have these in both 2D and 3D. In lecture we will illustrate principles in 2D.

Oct-Tree

66

KD-Tree Pre-Processing

A

A

67

KD-Tree Pre-Processing

A

A

B

B

68

D 3

2 C

KD-Tree Pre-Processing

A

1

D

2

C
B

4

3

5

1 B

A

4 5

Note: also subdivide

nodes 1 and 2, etc.

69

Data Structure for KD-Trees

Internal nodes store

• split axis: x-, y-, or z-axis

• split position: coordinate of split plane along axis

• children: pointers to child nodes

• No objects are stored in internal nodes

Leaf nodes store

• list of objects

70

4 5

D 3

2 C

Traversing a KD-Tree

A

B
C

D

1 B

A

71

4 5

D 3

2 C

Traversing a KD-Tree

1 B

A

tmin

tmax

Internal node: split

72

4 5

D 3

2 C

Traversing a KD-Tree

1 B

A

tmin

tmax

Assume it’s leaf node:

intersect all objects

73

4 5

D 3

2 C

Traversing a KD-Tree

1 B

A

tmin

tmax

Internal node: split

74

4 5

D 3

2 C

Traversing a KD-Tree

1 B

A

tmin

tmax

Leaf node: intersect

all objects

75

4 5

D 3

2 C

Traversing a KD-Tree

1 B

A

tmin

tmax

Internal node: split

76

4 5

D 3

2 C

Traversing a KD-Tree

1 B

A

tmin

tmax

Leaf node: intersect

all objects

77

4 5

D 3

2 C

Traversing a KD-Tree

1 B

A

Intersection found

78

Object Partitions &

Bounding Volume Hierarchy (BVH)

79

Bounding Volume Hierarchy (BVH)

Root

80

Bounding Volume Hierarchy (BVH)

81

Bounding Volume Hierarchy (BVH)

82

C D

B

Bounding Volume Hierarchy (BVH)

A

A
B

C

D

83

Summary: Building BVHs

• Find bounding box

• Recursively split set of

objects in two subsets

• Recompute the bounding

box of the subsets

• Stop when necessary

• Store objects in each leaf

node

84

Building BVHs

How to subdivide a node?

• Choose a dimension to split

• Heuristic #1: Always choose the longest axis in node

• Heuristic #2: Split node at location of median object

Termination criteria?

• Heuristic: stop when node contains few elements

(e.g. 5)

85

Data Structure for BVHs

Internal nodes store

• Bounding box

• Children: pointers to child nodes

Leaf nodes store

• Bounding box

• List of objects

Nodes represent subset of primitives in scene

• All objects in subtree

86

BVH Traversal

Intersect(Ray ray, BVH node) {

if (ray misses node.bbox) return;

if (node is a leaf node)

test intersection with all objs;

return closest intersection;

hit1 = Intersect(ray, node.child1);

hit2 = Intersect(ray, node.child2);

return the closer of hit1, hit2;

}

node

child1 child2

87

Spatial vs Object Partitions

Spatial partition (e.g.KD-tree)

• Partition space into

non-overlapping regions

• An object can be contained

in multiple regions

Object partition (e.g. BVH)

• Partition set of objects into

disjoint subsets

• Bounding boxes for each set

may overlap in space

88

Thank you!
(And thank Prof. Ravi Ramamoorthi and Prof. Ren Ng for many of the slides!)

89

	幻灯片 1
	幻灯片 2: Last Lectures
	幻灯片 3: Barycentric Coordinates
	幻灯片 4: Barycentric Coordinates
	幻灯片 5: Texture Magnification - Easy Case
	幻灯片 6: Point Sampling Textures — Problem
	幻灯片 7: Screen Pixel “Footprint” in Texture
	幻灯片 8: Mipmap (L. Williams 83)
	幻灯片 9: Trilinear Interpolation
	幻灯片 10: Environment Map
	幻灯片 11: Textures can affect shading!
	幻灯片 12
	幻灯片 13
	幻灯片 14: Course Roadmap
	幻灯片 15: Why Ray Tracing?
	幻灯片 16: Why Ray Tracing?
	幻灯片 17: Why Ray Tracing?
	幻灯片 18: Basic Ray-Tracing Algorithm
	幻灯片 19: Light Rays
	幻灯片 20
	幻灯片 21: Ray Casting
	幻灯片 22: Ray Casting - Generating Eye Rays
	幻灯片 23: Ray Casting - Shading Pixels (Local Only)
	幻灯片 24: Recursive (Whitted-Style) Ray Tracing
	幻灯片 25: Recursive Ray Tracing
	幻灯片 26: Recursive Ray Tracing
	幻灯片 27: Recursive Ray Tracing
	幻灯片 28: Recursive Ray Tracing
	幻灯片 29: Recursive Ray Tracing
	幻灯片 30: Recursive Ray Tracing
	幻灯片 31: Ray-Surface Intersection
	幻灯片 32: Ray Equation
	幻灯片 33: Ray Intersection With Sphere
	幻灯片 34: Ray Intersection With Sphere
	幻灯片 35: Ray Intersection With Implicit Surface
	幻灯片 36: Ray Intersection With Triangle Mesh
	幻灯片 37: Ray Intersection With Triangle
	幻灯片 38: Plane Equation
	幻灯片 39: Ray Intersection With Plane
	幻灯片 40: Möller Trumbore Algorithm
	幻灯片 41: Accelerating Ray-Surface Intersection
	幻灯片 42: Ray Tracing – Performance Challenges
	幻灯片 43: Ray Tracing – Performance Challenges
	幻灯片 44: Ray Tracing – Performance Challenges
	幻灯片 45: Bounding Volumes
	幻灯片 46: Bounding Volumes
	幻灯片 47: Ray-Intersection With Box
	幻灯片 48: Liang-baskey algorithm
	幻灯片 49: Liang-baskey algorithm
	幻灯片 50: Liang-baskey algorithm
	幻灯片 51: Ray Intersection with Axis-Aligned Box
	幻灯片 52: Ray Intersection with Axis-Aligned Box
	幻灯片 53: Ray Intersection with Axis-Aligned Box
	幻灯片 54: Why Axis-Aligned?
	幻灯片 55: Uniform Spatial Partitions (Grids)
	幻灯片 56: Preprocess – Build Acceleration Grid
	幻灯片 57: Preprocess – Build Acceleration Grid
	幻灯片 58: Preprocess – Build Acceleration Grid
	幻灯片 59: Ray-Scene Intersection
	幻灯片 60: Grid Resolution?
	幻灯片 61: Grid Resolution?
	幻灯片 62: Grid Resolution?
	幻灯片 63: Uniform Grids – When They Work Well
	幻灯片 64: Uniform Grids – When They Fail
	幻灯片 65: Spatial Partitions
	幻灯片 66: Spatial Partitioning Examples
	幻灯片 67: KD-Tree Pre-Processing
	幻灯片 68: KD-Tree Pre-Processing
	幻灯片 69: KD-Tree Pre-Processing
	幻灯片 70: Data Structure for KD-Trees
	幻灯片 71: Traversing a KD-Tree
	幻灯片 72: Traversing a KD-Tree
	幻灯片 73: Traversing a KD-Tree
	幻灯片 74: Traversing a KD-Tree
	幻灯片 75: Traversing a KD-Tree
	幻灯片 76: Traversing a KD-Tree
	幻灯片 77: Traversing a KD-Tree
	幻灯片 78: Traversing a KD-Tree
	幻灯片 79: Object Partitions & Bounding Volume Hierarchy (BVH)
	幻灯片 80: Bounding Volume Hierarchy (BVH)
	幻灯片 81: Bounding Volume Hierarchy (BVH)
	幻灯片 82: Bounding Volume Hierarchy (BVH)
	幻灯片 83: Bounding Volume Hierarchy (BVH)
	幻灯片 84: Summary: Building BVHs
	幻灯片 85: Building BVHs
	幻灯片 86: Data Structure for BVHs
	幻灯片 87: BVH Traversal
	幻灯片 88: Spatial vs Object Partitions
	幻灯片 89

