Geometric Deep Learning

— From the Perspective of 3D Shape Synthesis
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3D content generation refers to the process of creating 3D objects, scenes, and animations
for use in various media, such as films, video games, and virtual reality experiences.
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Let's focus on geometric shapes first.

How to synthesize an object with complex geometric shape?

Data-Driven Modeling Methods
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Let's focus on geometric shapes first.

How to synthesize an object with complex geometric shape?
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Voxels Point Cloud Mesh

Implicit Surface
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Let's focus on geometric shapes first.

How to synthesize an object with complex geometric shape?

Voxels Point Cloud

Implicit Surface

Explicit Representation Implicit Representation
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Let's focus on geometric shapes first.

How to synthesize an object with complex geometric shape?

Geometric Deep Learning Again!
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Learning Explicit and Implicit Representations
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* First attempt: 3D CNN + GAN
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Z G(z) in 3D Voxel Space
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* First attempt: 3D CNN + GAN
* How to save memory and time cost: octree...

Fi4 F Fi
Octree Octree Octree cen OGNConv OGNProp cee
level 1 IﬂVﬂl 2 level 3 4‘3 T — & — =
! 1 (one or more)
l * dg ‘ 13
L /
] propagated features
OGNLoss [] empty
; Il filled
] mixed
32 3 643 1 283 Ground truth Prediction
The volumetric output as an octree The “empty” cells are no longer needed and thus not propagated

Octree Generating Networks: Efficient Convolutional Architectures for High-resolution 3D Outputs
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* First attempt: MLP networks

A stack of fully-
connected layers

Point clouds generated from a hourglass architecture
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Challenge: varying topology

Solution 1: every shape is deformed with a fixed topology
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Input Image Perceptual Feature Pooling
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Deformation
Mesh
Deformation

Ellipsoid Mesh 2466 vertices

156 vertices

628 vertices

Network predicts a deformation of an ellipsoid. Unpooling provides the upsampling of meshes.

Pixel2Mesh: Generating 3D Mesh Models from Single RGB Images
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Challenge: varying topology
Solution 1: every shape is deformed with a fixed topology

K generated

3D points
Latent shape — MLP 1 — _ ; |
representation . D e '

2D point — MLP K —* &

Network predicts a deformation of a plane. The patches are stitched to a 3D shape.

AtlasNet: A Papier-Mache Approach to Learning 3D Surface Generation
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Challenge: varying topology

Solution 1: every shape is deformed with a fixed topology

Solution 2: iteratively update the topology
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Topology Boundary "
Modification Refinement
- ' - P — Forward path

----- > Intermediate results

Deep Mesh Reconstruction from Single RGB Images via Topology Modification Networks
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Figure 4. Qualitative results. (a) Input image; (b) N3MR; (c¢) Pixel2Mesh; (d) AtlasNet-25; (e) Baseline; (f) Ours; (g) Ground truth.

Deep Mesh Reconstruction from Single RGB Images via Topology Modification Networks
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* Neural Implicit Representation: o =g,(f, p)
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f —>  Feature vector 1
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p ——> point coordinates

Concatenate
» Copy and Concatenate
—>» FC, Leaky Rel.U
=== FC, Sigmoid

Learning Implicit Fields for Generative Shape Modeling
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* Neural Implicit Representation: o =g,(f, p)

Learning Implicit Fields for Generative Shape Modeling
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Voxels Point Cloud

Pros: Pros: Pros: Pros:

* Regular data suitable  Simple and intuitive e Complex shapes * High quality of
for convolutions representation Cons: surfaces

Cons: Cons: * Poor quality of Cons:

* Memory e Lack of topology surfaces  Computation cost
consumption issues information

)
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Learning different levels of 3D priors
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In Bayesian statistics, a "prior" represents the beliefs we have before
observing some data.
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Global prior: a shape is encoded as a feature sampled from the distribution.

Input Ground truth AtlasNet Matryoshka Clustering Retrieval Oracle NN

’ ’ @ ’ ' * The network usually learns
ik : several categories.

* Good quality, but poor
; generalization.
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Local prior: a shape is decomposed as lots of patches. Each patch is
encoded as a feature sampled from the learned distribution.

T2y.:z Trained on multi-class
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* but better generalization ability =

GT

Fostering Generalization in Single-view 3D Reconstruction by Learning a Hierarchy of Local and Global Shape Priors
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Multi-scale Feature Fusion
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learned, multi-scale point encoding learned point occupancy decoding Reconstruction

Implicit Functions in Feature Space for 3D Shape Reconstruction and Completion
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Learning other representations more than just a surface
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Structured Shape Synthesis: Each object is decomposed as a set of parts

and their assembly.

Input box structure Recovered structure
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Structured Shape Synthesis: Each object is decomposed as a set of parts
and their assembly.

o

Part-Mobility Dataset

Easy to represent the
assembly and the
part mobility
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Structured Shape Synthesis: Each object is decomposed as a set of parts
and their assembly.
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Animatable Human Reconstruction

Animatable Neural Radiance Fields for Modeling Dynamic Human Bodies
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Neurosymbolic models produce visual data via a combination of symbolic
programs and machine learning.
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Neurosymbolic Models for Computer Graphics
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Summary



Summary

* To synthesize 3D shapes, the first problem is to determine the proper data
representation and shape prior.

* Targeting at different application purposes, sometimes we need to design
our own data representation/structure.

* No one general method that rule all the applications!
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Thank you



