Geometric Deep Learning

— From the Perspective of 3D Geometry Processing
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Geometric Deep Learning aims to generalize neural network models to non-Euclidean

domains such as graphs and manifolds.
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Geometric Deep Learning aims to generalize neural network models to non-Euclidean
domains such as graphs and manifolds.

Regular 1D or 2D data Irregular and Structured Data

Euclidean Data Non-Euclidean Data
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Non-euclidean data can represent more complex items and concepts with more
accuracy than 1D or 2D representation:

* Point Cloud: represented as a Nx3 array, but it's not a 2D grid!

* Mesh: represented as a list of vertices and faces

Point Cloud Mesh
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Inductive bias of non-euclidean data is that, given data of an arbitrary type, format, and
Size, one can prioritize the model to learn certain patterns by changing the structure of
that data.

possible models possible
(hypothesis space) predictions

Inductive bias 1s the set
of assumptions that a
machine learning
algorithm makes about
the relationship between
mput variables (features)
and output variables
(labels) based on the
training data.

— Mitchell, 1980

Training
data
{X. Y}

Inductive Bias
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Fundamentally, geometric deep learning invovles encoding a geometric understanding
of data as an inductive bias in deep learning models to give them a helping hand.

Three types of geometric priors:
* Symmetry and invariance
 Stability

* Multiscale representations
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Fundamentally, geometric deep learning invovles encoding a geometric understanding
of data as an inductive bias in deep learning models to give them a helping hand.

Three types of geometric priors: s

* Symmetry and invariance Translational Equivariance

 Stability Computing a feature map
(by A) (top right) and then
translating (7" ) the feature
map (bottom right) 1s
equivalent to first
translating the 1mage
(bottom left) and then

computing the feature map

* Multiscale representations
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Fundamentally, geometric deep learning invovles encoding a geometric understanding
of data as an inductive bias in deep learning models to give them a helping hand.

Three types of geometric priors:

Image Space Representation Space

Large distortion (

Small distortions are
responsible for intra-
class variations, whereas

* Symmetry and invariance

 Stability

| .\ , Small\distortion . .
e A large distortions are

responsible for inter-
class variations. Stability
of the mapping is
required to ensure
measures of similarity
between data instances.

Small distortjon

* Multiscale representations

Large distortion
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Fundamentally, geometric deep learning invovles encoding a geometric understanding

of data as an inductive bias in deep learning models to give them a helping hand.
Three types of geometric priors:
* Symmetry and invariance
* Stability Multiscale and Hierarchical
representation provides the
global content 1in the low-
resolution version and

detailed local information n
the high-resolution version.

* Multiscale representations

c13
i

JUFTER £ S AR =R LM =2 YRS A 2 P 2% JUT b3



BT R

Geometric deep learning is classified into four fundamental categories
— Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges (2021)

Grids Groups Graphs Geodesics & Gauges

Euclidean samples, Homogenous spaces Nodes and connections, Manifolds,
e.g. image with global symmetries, e.g. social network e.g. 3D mesh
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Geometric deep learning is classified into four fundamental categories
— Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges (2021)

We will take a look at the representative methods
for 3D geometry processing!

JUARE S A =R LM =2 YRS A 2 P 2% JUT b3

13
o



Geometric Deep Learning
for 3D Point Clouds
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* There has been a vast of deep learning methods for 3D point cloud

processing, e.g. shape classification, object detection and tracking, 3D
segmentation.

A-CNN SFCNN JustLookUp PointDAN

PointNet ECC FoldingNet DGCNN PCNN ShapeContextNet Geo-CNN 3DPomtCapsNet
(Raoetal) (Linetal) (Qin et al.) PointASNL

(Qietal) (Simonovsky et al.) (Yang etal.) (Wang et al.) (Matan et al.) (Xie eral) (Lanetal) (Zhaoetal)  (Komarichev etal)

3DTI-Net KPCony SRN DPAM

T (Yan et al.)
OctNet T T AL : ]
Y-CNN ConvPoint

Riegler et al.) Kd-Net Spherical CNN ~ KCNet LocalSpecGCN | SpiderCNN MHBN  Point2Sequence

Graph-based Networks
Hierarchical Data Structure-based Networks
Other Networks

’ T (Klokov et al) | (Esteves et al.) (Shen et al.) (Wang et al) (Xuetal) (Yuetal) (Liv et al.) (Pan et al) lI.L.-T-L.' al) (Thomas et al.)(Duan et al.) (Liu et al) ”'[’””‘J‘f etal.)
o TR 2 TN O T B
VoxNet ; Deep Sets  PointNet++ O-CNN AGCN Flex-Convolution RGCNN PVNet PVRNet PATs RS-CNN ClusterNet InterpCNN RCNet Grid-GCN
aturana et al.) (Zaheeretal) (Qietal)(Wang etalf) (Lietal) (Groh et al.) (Te etal) (Youetal) (You et al) (Yangetal) (Liuetal) (Chenetal)(Maoetal) (Wu et al) (Xu et al)

s Multi-view Networks

s Volumetric Networks Mo-Net

s Pointwise MLP Networks 1NN : e

e B W0 Pointwise CNN Tensor field Network MCCNN PointCony (Joseph-Riviin etal) 1p-3DCNN PointWeb DensePoint

— (Hua et al.) (Thomas et al.) (Hermosilla et al.) (Wu et al.) (Kumawat et al.) (Zhao et al.) (Liu et al)

[r————]

I

A chronological overview of deep learning-based 3D shape classification methods

Deep Learning for 3D Point Clouds: A Survey
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Point Set Surface
* Unordered. Point cloud is a set of points without specific order.

* Interaction among points. Points are not isolated, and neighboring points
form a meaningful subset.

* Invariance under transformations. The learned representation of the
point set should be invariant to certain transformations.
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2D Convolutional Neural Network

; A (o Aggregation Function
/ The convolution
1j0|0|0]JO0GY &Y ©F © operator aggregates the
0 1 0 0 1 3 3 0 1 features Wlthln d Slldlng
window mto a higher-
0101111]0 3 ) (=2 (=2 (=t level feature.
1100 (0|1%w
0112|0101
0 o S A 0 |
6 X 6 image
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PointNet, 2017

* Fully-connected layers to encode the shape feature.
* A maxpooling aggregation function for the unordered input.

* Canonical alignment to be invariant to transformations.

Classification Network

input mlp (64,64) feature mlp (64 128 1024) ik ool
E transform , 5 transform i pool 1024 (512,256,k)
'S | e = >
i;‘ T —| & shared E g E sha!red nx1024 ll =T |
-y global feature
B ——  — ﬁ :
e ~ output scores
...... ‘lr‘(________,_.--poultfeatures
P §
_’ 2 £ |8
niSE—— shared E shared ‘ =
="
e L= E
mlp (512,256,128) mlp (128,m)
Segmem‘atton Network

PointNet: Deep Learning on Point Sets for 3D Classification and Segmentation
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PointNet++, 2017

* Progressively encode the shape feature in a coarse-to-fine manner

skip link concatenation

—_— : -
interpolate UMt interpolate ~ unit
pointnet pointnet

Classification
(1,C4)

—> e S %
i sampling & pointnet
grouping —f
J
~
set abstraction set abstraction —>

pointnet fully connected layers

PointNet++: Deep Hierarchical Feature Learning on Point Sets in a Metric Space
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PointCNN, 2018 .

(_Conw | o o o —{Com] « v »

/.\ /.'\ /.\ ‘.'.‘
X-Convolution 7 i . )
[" K, 00— .‘9 ."’1 K

* weighting of the input features Qo/\“ 7\ /\
* permutation of the points (e com) //\, (3om) '\.

ALGORITHM 1: X-Conv Operator
Input :K,p, P, F

Output: F, > Features “projected”, or “aggregated”, into representative point p
1: PP+—P—p > Move P to local coordinate system of p
2: Fs + MLPs(P') > Individually lift each point into Cs dimensional space
3: F. « [Fs,F] > Concatenate Fs and F, F.. isa K x (Cs + C1) matrix
4: X + MLP(P') > Learn the K x K X'-transformation matrix
5: Fx « X xF. > Weight and permute F'.. with the learnt X
6: F, < Conv(K,Fy) > Finally, typical convolution between K and F x

PointCNN: Convolution On X -Transformed Points
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KPConv, 2019

KPConv use any number of kernel points with learned continuous location to
form the convolution operator.

Filter Values

Kernel Pomrs

KPConv: Flexible and Deformable Convolution for Point Clouds
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DGCNN, 2018

* Dynamically constructed graph
* EdgeConv incorporates local neighborhood information

: - e. @2
%ia \ / EdgeConv iy i3 :/ e;im = ReLU(Opm - (x; = Xi) + §,,, - Xi),
_ﬁh
e

which can be implemented as a shared MLP, and taking

il
.,/ffffaﬁj Ifff/;gxxi AR
, € . 1 S v ijm’

O | O where © = (04, ..., 05t By oo dum)
X.

Dynamic Graph CNN for Learning on Point Clouds
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PCT, 2019

PCT uses the attention mechanism to learn the aggregation of unordered

point features.

transpose

| . jﬂ% convolution attention
§ | i feature maps(x) xicomy | map
?5' % ﬁ-—‘J—‘ Nt sell-attention
i ] 1 feature maps (o)
Sy 1 j I
‘g::ﬁf’? ﬁ' Ixlconv = {'
h(x) ;!ﬂ
% 1x1cony l_'_
AL Self-Attention Mechanism
Point-wise attention map for different
uery points indicated by ¢
Auey P Y 3 PCT: Point Cloud Transformer
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Geometric Deep Learning
for 3D Meshes
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Meshes face similar challenges, e.g. irregular, unordered, inconsistent issue.

Irregular and unordered Inconsistent

An Introduction to Deep Learning on Meshes
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Meshes face similar challenges, e.g. irregular, unordered, inconsistent issue.
But they are different from point clouds or general graphs.

connectivity

An Introduction to Deep Learning on Meshes
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Meshes face similar challenges, e.g. irregular, unordered, inconsistent issue.
But they are different from point clouds or general graphs.

structure

An Introduction to Deep Learning on Meshes
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MeshCNN, 2019

Mesh edges are analogized to pixels of images.
* Convolutions are applied on edges and the four edges of incident triangles

* Pooling is applied via an edge collapse operation

Convolution Pooling
The 1-ring neighbors of e

can be ordered as (a,b,c,d) The oniginal 5 edges

p= avg a,b,e)
or (c,d, a,b). So we can 18 transformed mto
aggregate OO| Uﬂp00| 2 edges after the

them into two pairs of collapse. We can
edges (e.g., aand ¢, and b pool each three
and d), and apply simple q= avg(c d.e) edges to one

symmetric functions on updated edge
each pair (e.g., sum(a,c)). Convolution Pooling feature.

MeshCNN: A Network with an Edge
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MeshWalker, 2020

Random walk to explore the local and global geometry information.
RNN to aggregate the information along each walk.

¥ L
Walk step: = Walk step: e

Ll | = I =
gorilla flamingo hand camel gorilla horse hand camel gorilla horse hand camel
(a) 5 walks on the surface MeshWalker: Deep Mesh Understanding by Random Walks
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SubdivNet, 2022

Loop subdivision to construct a hierarchical subdivision structure.
Regular convolution and pooling on the hierarchical structure.

Loop Subdivision

Subdivision-Based Mesh Convolution Networks
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SubdivNet, 2022

Loop subdivision to construct a hierarchical subdivision structure.
Regular convolution and pooling on the hierarchical structure.

le=3. d=1 k=5, d=1 k=3 d-2
_HE NN
|
_HE NN
k=3, d=1 k=5, d=1 k=3, d=2 k=3; d=3

Mesh convolution (Top) and the analogous lattice convolution (Bottom)
Subdivision-Based Mesh Convolution Networks
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SubdivNet, 2022

Loop subdivision to construct a hierarchical subdivision structure.
Regular convolution and pooling on the hierarchical structure.

------------------------------------------

n )
>
global S
= 5 BB
v pooling E
: J

Subdivision-Based Mesh Convolution Networks
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What can we do with the help
of these backbone networks?
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* We can classify the shape feature and point-wise features respectively for
global recognition and local analysis tasks.

Classification Segmentation Correspondence Retrieval

% —> cat

—> dog

P,\ *\
- ﬂ' —> dinosaur

global local local

id
P
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* Region Proposal Methods for 3D object detection / instance segmentation.

a: Bottom-up 3D Proposal Generation

' Point cloud representation Point-wise Generate 3D proposal }
’ ofinputscene feature vector ‘ from each foreground point
g_’ Bin-based 3D
o ° Box Generation
. 0 ] = =
aeroplane? no. : M EHR=
. tel|lgo
2= ow|la0
i & o Foreground Point
person“) ves : : 54 Segmentation
’ ‘ 1 —
i = "'_—_‘F_o_reg_rgum Mask. — 7 S B
Q - ! - T e ————= DR —— b: Canonical 3D Box Refinement
tvmonitor? no. P N=CIT 3D boxes of defected objects
: ey | Semantic Features Merged Features | a0 :
7 s e . P | “ Bin-based 3D
1. Input 2. Extract region 3. Compute 4. Classify LD | @2 - 9 - I |5 Asocketmmen
. . . | il — j L \| 28
" T i — 2 . ! | ! b}
image  proposals (~2k) CNN features regions e S P o
L= I ~ Yo low
: \| / | |Local Spatial Points Canonical y |5 Confidence |
Re ion Pro Osal [ e a4 - @ Transformation Erediction
8 P |Point Coud Region Pooig,

PointRCNN

Directly replace the backbone network from 2D CNN to 3D networks
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* Design the input and output data format for 3D object tracking / motion

4
o‘ ; ;
skip connections

prediction.
set conv
Iayers
n1/8
set conv
Iayers
n2/8

point feature learning point mixture flow refinement

o point cloud 1

FlowNet3D [— set upconv

layers

1

point cloud 1: n;X3
point cloud 2: n,x3

scene flow: n;X3

point cloud 2

n,

Flexibly utilize the geometric layers for specific processing
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€ Multi-modal Perception in practice

R.GB Image

g Exd
Perception 5

Point —
Unimodal |Cloud =

v L

( Social Robot Navigation Decision-Making System )

+

Global Path ;ﬁ Navigation Action a
Global Planning ""Lﬁ-&
Local Planning Syst
S}rgtem / 7 4 "'P e S RS a

RGB + point cloud

Interaction-based Reconstruction
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@ A sequence of networks together to complete a complex task.

Curve proposal

Point e e Curve
classification /(fﬂ {w"”"""?~ } generation proposal
N 5. --_:-u----"‘““"‘*;.} i selection

B s

e

'b‘.“,.,u-o

o
» I_I_I:I . ’;, Hirnggneen? ? f » |- »
¥ 7

Input point cloud Edge & corner points Closed curves Final curves

PIE-NET
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Summary



Summary

* Geometric deep learning study the fundamental network design for non-
euclidean data, e.g. various 3D surface representations.

* There has been a vast of backbone networks designed for point clouds
and meshes.

* We can flexibly select and combine the network modules for specific
tasks.
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Thank you



