
Computer Graphics

Ray Tracing 2

( Radiometry & Light Transport & 

Global Illumination)
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Last Lecture

• Why ray tracing?

• Whitted-style ray tracing

• Ray-object intersections

- Implicit surfaces

- Triangles

• Axis-Aligned Bounding Boxes (AABBs)

- Understanding — pairs of slabs

- Ray-AABB intersection

• Uniform Spatial Partitions (Grids)

• Oct-Tree KD-Tree  BSP-Tree  BVH
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• Rasterization couldn’t handle global effects well

-

-

(Soft) shadows

And especially when the light bounces more thanonce

Soft shadows Glossy reflection Indirect illumination

Why Ray Tracing?
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Recursive Ray Tracing

eye point

image plane

light source

primary ray

secondary rays

shadow rays
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Ray Intersection With Triangle

Triangle is in a plane

• Ray-plane intersection

• Test if hit point is inside  

triangle

Many ways to optimize…
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Möller Trumbore Algorithm

A faster approach, giving barycentric coordinate directly  

Derivation in the discussion section!

Recall: How to determine  

if the “intersection” is  

inside the triangle?

Hint:

(1-b1-b2), b1, b2 are  

barycentric coordinates!

6



Bounding Volumes

Quick way to avoid intersections: bound complex object  

with a simple volume

• Object is fully contained in the volume

• If it doesn’t hit the volume, it doesn’t hit theobject

• So test BVol first, then test object if it hits
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Ray Intersection with Axis-Aligned Box

2D example; 3D is the same! Compute intersections with slabs  

and take intersection of tmin/tmax intervals

tmin

tmax

tmax

tmin

tmax

tmin

Note: tmin < 0

Intersections with xplanes Intersections with yplanes Final intersection result

How do we know when the ray intersects the box?
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• Recall: a box (3D) = three pairs of infinitely large slabs

• Key ideas

-

-

The ray enters the box only when it enters all pairs of slabs  

The ray exits the box as long as it exits any pair ofslabs

• For each pair, calculate the tmin and tmax (negative isfine)

• For the 3D box, tenter = max{tmin}, texit = min{tmax}

• If tenter < texit, we know the ray stays a while in the box  

(so they must intersect!) (not done yet, see the next slide)

Ray Intersection with Axis-Aligned Box

9



• However, ray is not a line

- Should check whether t is negative for physicalcorrectness!

• What if texit < 0?

- The box is “behind” the ray — nointersection!

• What if texit >= 0 and tenter < 0?

- The ray’s origin is inside the box — have intersection!

• In summary, ray and AABB intersect iff

- tenter < texit && texit >=0

Ray Intersection with Axis-Aligned Box
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Ray-Scene Intersection

Step through grid in ray  

traversal order

For each grid cell  

Test intersection  

with all objects  

stored at that cell
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Spatial Partitioning Examples

BSP-TreeKD-Tree

Note: you could have these in both 2D and 3D. In lecture we will illustrate principles in 2D.

Oct-Tree
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Summary: Building BVHs

• Find bounding box

• Recursively split set of  

objects in two subsets

• Recompute the bounding  

box of the subsets

• Stop when necessary

• Store objects in each leaf  

node
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Data Structure for BVHs

Internal nodes store

• Bounding box

• Children: pointers to child nodes  

Leaf nodes store

• Bounding box

• List of objects

Nodes represent subset of primitives in scene

• All objects in subtree
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BVH Traversal

Intersect(Ray ray, BVH node) {

if (ray misses node.bbox) return;

if (node is a leaf node)

test intersection with all objs;  

return closest intersection;

hit1 = Intersect(ray, node.child1);  

hit2 = Intersect(ray, node.child2);

return the closer of hit1, hit2;

}

node

child1 child2
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Spatial vs Object Partitions

Spatial partition (e.g.KD-tree)

• Partition space into

non-overlapping regions

• An object can be contained  in 

multiple regions

• Intersection between  objects and 

bounding box

Object partition (e.g. BVH)

• Partition set of objects into  

disjoint subsets

• Bounding boxes for each set  

may overlap in space
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光线追踪对于光线的物理性质有哪些基本假设？

光沿直线传播

忽略光的波动属性

光线不会发生碰撞

光线的可逆性

A

B

C

D

提交

光线发生碰撞能量会有损失E

多选题 1分
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请问AABB包围盒与
OBB包围盒的优缺点
分别是？

作答

主观题 10分



Today

• Using AABBs to accelerate ray tracing

- Uniform grids

- Spatial partitions

• Basic radiometry （辐射度量学）

- Advertisement: new topics from now on,  

scarcely covered in other graphics courses
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Diffuse Reflection
• But how much light (energy) is received?

- Lambert’s cosine law

Top face of cube
receives a certain

amount of light

Top face of  

60º rotated cube
intercepts half the light

In general, light per unit  
area is proportional to  

cos θ = l • n

l
n
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四季，能量 



intensity  

here:

intensity  

here:

Light Falloff
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戴森球



Lambertian (Diffuse) Shading

Shading independent of view direction

energy arrived
at the shading point

diffuse  
coefficient  

(color)

diffusely  
reflected light

v

l n

energy received  
by the shading point
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Radiometry — Motivation

Observation

• In assignment 3, we implement the Blinn-Phong model

• Light intensity I is 10, for example

• But 10 what?

Do you think Whitted style ray tracing gives you CORRECT results?  

24

All the answers can be found in radiometry

• Also the basics of “Path Tracing”



Radiometry (辐射度量学)

Measurement system and units for illumination

Accurately measure the spatial properties of light

- New terms: Radiant flux, intensity, irradiance, radiance

Perform lighting calculations in a physically correct manner

—————————————————————————

My personal way of learning things:

- WHY, WHAT, then HOW
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Radiant Energy and Flux (Power)
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辐射通量辐射能



Radiant Energy and Flux (Power)

Definition: Radiant energy is the energy of electromagnetic  

radiation. It is measured in units of joules, and denoted by  

the symbol:

Definition: Radiant flux (power) is the energy emitted,  

reflected, transmitted or received, per unit time.

*
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辐射通量辐射能

流明



Flux – #photons flowing through a sensor in unit time

From London and Upton
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Important Light Measurements of Interest

Light Emitted  

From A Source

“Radiant Intensity”
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辐射强度

Light Falling  

On A Surface

“Irradiance”

辐照度

Light Traveling  

Along A Ray

“Radiance”

辐射



Radiant Intensity
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辐射强度



Radiant Intensity

Definition: The radiant (luminous) intensity is the power per unit

solid angle (?) emitted by a point light source.

( )
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辐射强度

烛光或坎德拉（英语拉丁语：candela）是发光强度
的单位，国际单位制七大基本单位之一，符号cd



Angles and Solid Angles

Angle: ratio of subtended arc length  

on circle to radius

•

• Circle has radians

Solid angle: ratio of subtended area on  

sphere to radius squared

•

• Sphere has steradians
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Differential Solid Angles
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Differential Solid Angles

Sphere:
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as a direction vector

Will use to denote a  

direction vector (unit length)
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Isotropic Point Source
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Modern LED Light

Output: 815 lumens

(11W LED replacement  

for 60W incandescent)

Radiant intensity?  

Assume isotropic:

Intensity = 815 lumens / 4pisr

= 65 candelas
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Reviewing Concepts

Radiant energy (barely used in CG)

• the energy of electromagnetic radiation

Radiant flux (power)

• Energy per unit time

Radiant intensity

• power per unit solid angle

Solid Angle

• ratio of subtended area on sphere to radius squared
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辐射通量

辐射能

辐射强度

立体角



Irradiance
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辐照度



Irradiance

Definition: The irradiance is the power per unit area incident  

on a surface point.
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辐照度



Lambert’s Cosine Law

Top face of cube
receives a certain

amount of power

Top face of  

60º rotated cube
receives half power

In general, power per unit  

area is proportional to

l
n

Irradiance at surface is proportional to cosine of angle  

between light direction and surface normal.
(Note: always use a unit area, the cosine applies on Φ)
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Why Do We Have Seasons?

Summer  

(Northern hemisphere)

Winter  

(Northern hemisphere)

Earth’s axis of rotation: ~23.5° off axis

[Im
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it: P

e
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rs
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re
n

tic
e

H
a
ll]

Sun
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Correction: Irradiance Falloff

Assume light is emitting  

power in a uniform angular  

distribution

Compare irradiance at surface  

of two spheres:
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Radiance

44

辐射



Radiance

Radiance is the fundamental field quantity that describes the  

distribution of light in an environment

• Radiance is the quantity associated with a ray

• Rendering is all about computing radiance

Light Traveling Along A Ray
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Radiance

Definition: The radiance (luminance) is the power emitted,  

reflected, transmitted or received by a surface, per unit solid  

angle, per projected unit area.

accounts for  

projected surface area
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Radiance

Definition: power per unit solid angle per projected unit area.

Recall

• Irradiance: power per projected unit area

• Intensity: power per solid angle  

So

• Radiance: Irradiance per solid angle

• Radiance: Intensity per projected unit area
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Incident Radiance

Incident radiance is the irradiance per unit solid angle  

arriving at the surface.

i.e. it is the light arriving at the surface along a given ray  

(point on surface and incident direction).
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Exiting Radiance

Exiting surface radiance is the intensity per unit projected  

area leaving the surface.

e.g. for an area light it is the light emitted along a given ray  

(point on surface and exit direction).
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Irradiance vs. Radiance

Irradiance: total power received by area dA

Radiance: power received by area dA from “direction” dω

Unit Hemisphere:
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Bidirectional Reflectance  

Distribution Function  

(BRDF)
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Reflection at a Point

Differential irradiance incoming:

Differential radiance exiting (due to ):

Radiance from direction ω i  turns into the power E that dA receives  

Then power E will become the radiance to any other direction ωo
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BRDF

The Bidirectional Reflectance Distribution Function (BRDF)  

represents how much light is reflected into each outgoing direction  

from each incoming direction
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The Reflection Equation
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Challenge: Recursive Equation

Reflected radiance depends on incoming radiance

But incoming radiance depends on reflected radiance (at  

another point in the scene)
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The Rendering Equation

Re-write the reflection equation:

by adding an Emission term to make it general!

The Rendering Equation

How to solve? Next lecture!
Note: now, we assume that all  

directions are pointing outwards!
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Understanding the rendering equation
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Reflection Equation

ω
i ωr

x

Reflected Light  

(Output Image)

Emission Incident  

Light (from  

light source)

BRDF Cosine of  

Incident angle
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Reflection Equation

Reflected Light  

(Output Image)

Emission Incident  

Light (from  

light source)

BRDF Cosine of  

Incident angle

ω i ωr

x
Sum over all light sources
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Reflection Equation

ω i ωr

Reflected Light  

(Output Image)

Emission Incident  

Light (from  

light source)

BRDF
Cosine of  

Incident angle

x
Replace sum with integral

dωi
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Rendering Equation

ω
i ωr

x

Lr (x,ω r ) = Le(x,ωr ) + ∫ Lr (xʹ,−ω i )f (x,ω i ,ωr ) cosθidω i

Reflected Light  

(Output Image)

Ω

Emission BRDF Cosine of  

Incident angle

dωi

Surfaces (interreflection)

xʹ
dA

UNKNOWN

Reflected  

Light

UNKNOWNKNOWN KNOWN KNOWN
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Rendering Equation (Kajiya 86)
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Rendering Equation as  

Integral Equation

BRDF Cosine of  

Incident angle

UNKNOWN KNOWN UNKNOWN KNOWN KNOWN

l(u) = e(u)+ ∫ l(v) K(u,v)dv

Is a Fredholm Integral Equation of second kind  

[extensively studied numerically] with canonical form

Lr (x,ω r ) = Le(x,ω r ) + ∫
Ω

Reflected Light Emission  
(Output Image)

Lr (xʹ,−ω i )

Reflected  

Light

f (x,ω i ,ω r ) cosθidω i

Kernel of equation

63



Linear Operator Equation

K (u,v)dvl(u) = e(u)+ ∫l(v)

Kernel of

equation

Light 

Transport

Operator

L = E + KL
Can be discretized to a simple matrix equation  
[or system of simultaneous linear equations]  
(L, E are vectors, K is the light transport
matrix)
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Ray Tracing and extensions

• General class numerical Monte Carlo methods

• Approximate set of all paths of light in scene

L = E + KL
IL − KL =E
(I − K)L = E

L = (I − K)−1E
Binomial Theorem

L = (I + K + K 2 + K 3 +...)E

L = E + KE + K2E + K3E + ...
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Ray Tracing

L = E + KE + K2E + K3E + ...

Emission directly  

From light sources

Direct Illumination  

on surfaces

Indirect Illumination  

(One bounce indirect)  

[Mirrors, Refraction]

(Two bounce indirect illum.)
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Ray Tracing

Emission directly  

From light sources

Direct Illumination  

on surfaces

Indirect Illumination  

(One bounce indirect)  

[Mirrors, Refraction]

(Two bounce indirect illum.)

L = E + KE + K2E + K3E + ...

Shading in  
Rasterization
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Direct illumination

p
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One-bounce global illumination (dir+indir)

p

69



Two-bounce global illumination

p
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Four-bounce global illumination

p
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Eight-bounce global illumination

p
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Sixteen-bounce global illumination

p
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Probability Review
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Random Variables

random variable. Represents a distribution of potential  

values

probability density function (PDF). Describes relative  

probability of a random process choosing value

Example: uniform PDF: all values over a domain are equally likely

e.g. A six-sided die

takes on values 1, 2, 3, 4, 5, 6
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Probabilities

n discrete values

With probability

Requirements of a probability distribution:

Six-sided die example:
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Expected Value of a Random Variable

The average value that one obtains if repeatedly drawing  

samples from the random distribution.

drawn from distribution with

n discrete values  

with probabilities

Expected value of X:

Die example:
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Continuous Case: Probability Distribution Function (PDF)

A random variable X that can take any of a continuous set of  

values, where the relative probability of a particular value is  

given by a continuous probability density function p(x).

Conditions on p(x):  

Expected value of X:
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Function of a Random Variable

A function Y of a random variable X is also a random  

variable:

Expected value of a function of a random variable:
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Thank you!
(And thank Prof. Ravi Ramamoorthi and Prof. Ren Ng for many of the slides!)
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